(2)歸納出之間的關系式.并求出的表達式, 查看更多

 

題目列表(包括答案和解析)

某少數(shù)民族的刺繡有著悠久的歷史,如下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第個圖形包含個小正方形.

(1)求出的值;
(2)利用合情推理的“歸納推理思想”,歸納出之間的關系式,并根據(jù)你得到的關系式求出的表達式;
(3)求的值.

查看答案和解析>>

某少數(shù)民族的刺繡有著悠久的歷史,如下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第個圖形包含個小正方形.

(1)求出的值;

(2)利用合情推理的“歸納推理思想”,歸納出之間的關系式,并根據(jù)你得到的關系式求出的表達式;

(3)求的值.

【解析】本試題主要考查了合情推理中歸納推理的運用,并能得到一般性結論,求出的表達式,并在此基礎上能求解和式的值運算,結合數(shù)列和推理的一道綜合試題。

 

查看答案和解析>>

某少數(shù)民族的刺繡有著悠久的歷史,如下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第個圖形包含個小正方形.

(1)求出的值;

(2)利用合情推理的“歸納推理思想”,歸納出之間的關系式,并根據(jù)你得到的關系式求出的表達式;

(3)求的值.

【解析】本試題主要考查了合情推理中歸納推理的運用,并能得到一般性結論,求出的表達式,并在此基礎上能求解和式的值運算,結合數(shù)列和推理的一道綜合試題。

 

查看答案和解析>>

某少數(shù)民族的刺繡有著悠久的歷史,如下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第個圖形包含個小正方形.

(1)求出的值;

(2)利用合情推理的“歸納推理思想”,歸納出之間的關系式,并根據(jù)你得到的關系式求出的表達式;

(3)求的值.

【解析】本試題主要考查了合情推理中歸納推理的運用,并能得到一般性結論,求出的表達式,并在此基礎上能求解和式的值運算,結合數(shù)列和推理的一道綜合試題。

 

查看答案和解析>>

某少數(shù)民族的刺繡有著悠久的歷史,如右圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第n個圖形包含個小正方形.

(1)求出的值;

(2)利用合情推理的“歸納推理思想”,歸納出之間的關系式,并根據(jù)你得到的關系式求出的表達式;

(3)求的值。

 

查看答案和解析>>

 

一、

ABCBA  CDB

二、

9.―2       10.4      11.16      12.36       13.   

14.    15.64

三、

16.解:(1)

,

…………………………2分

………………4分

取得最大值為,

…………………………6分

(2)設內角A、B、C的對邊分別為a、b、c

由(1)知:

由余弦定理得:

……………………8分

,

      

       當且僅當    12分

17.解:記事件A、B、C分別表示小明在甲、乙、丙三家公司面試合格,則

      

   (I)三家公司至少有一家面試合格的概率為:

      

       在三家公司至少有一家面試合格的概率為0.96.       6分

   (II)任兩家公司至少有一家面試合格的概率等價于在三家公司至少有兩家面試合格的概率,

      

             8分

      

       在任意兩家公司至少有一家面試合格的概率為0.7        12分

18.解 :(I)D1在平面ABCD上的射影為O,

             2分

       點O為DC的中點,DC=2,

       OC=1.

       又

       同理

      

       平面D1AO.      4分

   (II)平面ABCD,

           

       又平面D1DO.

       ,

       ,

       在平面D1DO內,作

       垂足為H,則平面ADD1A1

       線段OH的長為點O到平面ADD1A1的距離.       6分

       平面ABCD,

       在平面ABCD上的射影為DO.

       為側棱DD1與底面ABCD所成的角,

      

       在

       即點O到平面ADD1A1的距離為    8分

<dfn id="4raj3"><big id="4raj3"></big></dfn>

               平面ABCD,

              

               又平面AOD1,

               又

               為二面角C―AD1―O的平面角      10分

               在

              

               在

              

               取D1C的中點E,連結AE,

               則

              

              

               在

               二面角C―AD1―O的大小為      12分

        19.解:(I)

                   3分

           (II)因為

              

               歸納得

               則     5分

              

              

                     7分

           (III)當

                     9分

               則

              

                      13分

        20.解:(I)設

              

              

                      3分

               代入為P點的軌 跡方程.

               當時,P點的軌跡是圓.     6分

           (II)由題設知直線的方程為,

               設

               聯(lián)立方程組

               消去     8分

        * 方程組有兩個不等解,

              

              

               而

                   10分

               當

               當

               當

               綜上,      13分

        21.解:(1)

                  1分

               依題意有

              

               解得

                    4分

           (2).

               依題意,是方程的兩個根,

              

              

              

                       6分

               設

               由;

               由

               所以函數(shù)在區(qū)間上是增函數(shù),在區(qū)間[4,6]上是減函數(shù).

               有極大值為96,

               上的最大值為96.

                      9分

           (III)的兩根,

               .

              

               ∴

        =          11分

               ∵,

              

               即

              

               成立          13分

         

         


        同步練習冊答案