15.定義在N上的函數(shù).則集合A的子集個數(shù)為 . 查看更多

 

題目列表(包括答案和解析)

下列命題中:
①集合A={ x|0≤x<3且x∈N }的真子集的個數(shù)是8;
②將三個數(shù):x=20.2,y=(
1
2
)2
,z=log2
1
2
按從大到小排列正確的是z>x>y;
③函數(shù)f(x)=x2+(3a+1)x+2a在 (-∞,4)上為減函數(shù),則實數(shù)a的取值范圍是a≤-3;
④已知函數(shù)y=4x-4•2x+1(-1≤x≤2),則函數(shù)的值域為[-
3
4
,1];
⑤定義在(-1,0)的函數(shù)f(x)=log(2a)(x+1)滿足f(x)>0的實數(shù)a的取值范圍是0<a<
1
2
;
⑥關(guān)于x的一元二次方程x2+mx+2m+1=0一個根大于1,一個根小于1,則實數(shù)m的取值范圍m<-
2
3
;
其中正確的有
③⑤⑥
③⑤⑥
(請把所有滿足題意的序號都填在橫線上)

查看答案和解析>>

下列命題中:
①集合A={ x|0≤x<3且x∈N }的真子集的個數(shù)是8;
②關(guān)于x的一元二次方程x2+mx+2m+1=0一個根大于1,一個根小于1,則實數(shù)m的取值范圍m<-
2
3
;
③函數(shù)f(x)=x2+(3a+1)x+2a在 (-∞,4)上為減函數(shù),則實數(shù)a的取值范圍是a≤3;
④已知函數(shù)y=4x-4•2x+1(-1≤x≤2),則函數(shù)的值域為[-
3
4
,1];
⑤定義在(-1,0)的函數(shù)f(x)=log(2a)(x+1)滿足f(x)>0的a的取值范圍是(0,
1
2
);
⑥將三個數(shù):x=20.2,y=(
1
2
)2
,z=log2
1
2
,
按從大到小排列正確的是z>x>y,其中正確的有
②⑤
②⑤

查看答案和解析>>

下列命題中:
①集合A={ x|0≤x<3且x∈N }的真子集的個數(shù)是8;
②將三個數(shù):x=20.2,y=(
1
2
)2
,z=log2
1
2
按從大到小排列正確的是z>x>y;
③函數(shù)f(x)=x2+(3a+1)x+2a在 (-∞,4)上為減函數(shù),則實數(shù)a的取值范圍是a≤-3;
④已知函數(shù)y=4x-4•2x+1(-1≤x≤2),則函數(shù)的值域為[-
3
4
,1];
⑤定義在(-1,0)的函數(shù)f(x)=log(2a)(x+1)滿足f(x)>0的實數(shù)a的取值范圍是0<a<
1
2
;
⑥關(guān)于x的一元二次方程x2+mx+2m+1=0一個根大于1,一個根小于1,則實數(shù)m的取值范圍m<-
2
3

其中正確的有______(請把所有滿足題意的序號都填在橫線上)

查看答案和解析>>

下列命題中:
①集合A={ x|0≤x<3且x∈N }的真子集的個數(shù)是8;
②關(guān)于x的一元二次方程x2+mx+2m+1=0一個根大于1,一個根小于1,則實數(shù)m的取值范圍;
③函數(shù)f(x)=x2+(3a+1)x+2a在 (-∞,4)上為減函數(shù),則實數(shù)a的取值范圍是a≤3;
④已知函數(shù)y=4x-4•2x+1(-1≤x≤2),則函數(shù)的值域為[,1];
⑤定義在(-1,0)的函數(shù)f(x)=log(2a)(x+1)滿足f(x)>0的a的取值范圍是(0,);
⑥將三個數(shù):x=20.2,y=,z=
按從大到小排列正確的是z>x>y,其中正確的有    

查看答案和解析>>

下列命題中:
①集合A={ x|0≤x<3且x∈N }的真子集的個數(shù)是8;
②將三個數(shù):x=20.2,y=,z=按從大到小排列正確的是z>x>y;
③函數(shù)f(x)=x2+(3a+1)x+2a在 (-∞,4)上為減函數(shù),則實數(shù)a的取值范圍是a≤-3;
④已知函數(shù)y=4x-4•2x+1(-1≤x≤2),則函數(shù)的值域為[,1];
⑤定義在(-1,0)的函數(shù)f(x)=log(2a)(x+1)滿足f(x)>0的實數(shù)a的取值范圍是;
⑥關(guān)于x的一元二次方程x2+mx+2m+1=0一個根大于1,一個根小于1,則實數(shù)m的取值范圍;
其中正確的有    (請把所有滿足題意的序號都填在橫線上)

查看答案和解析>>

 

一、

ABCBA  CDB

二、

9.―2       10.4      11.16      12.36       13.   

14.    15.64

三、

16.解:(1)

,

…………………………2分

………………4分

取得最大值為,

…………………………6分

(2)設(shè)內(nèi)角A、B、C的對邊分別為a、b、c

由(1)知:

由余弦定理得:

……………………8分

,

      

       當且僅當    12分

17.解:記事件A、B、C分別表示小明在甲、乙、丙三家公司面試合格,則

      

   (I)三家公司至少有一家面試合格的概率為:

      

       在三家公司至少有一家面試合格的概率為0.96.       6分

   (II)任兩家公司至少有一家面試合格的概率等價于在三家公司至少有兩家面試合格的概率,

      

             8分

      

       在任意兩家公司至少有一家面試合格的概率為0.7        12分

18.解 :(I)D1在平面ABCD上的射影為O,

  • <td id="ismam"><tbody id="ismam"></tbody></td>
    <source id="ismam"><tr id="ismam"></tr></source><tbody id="ismam"><noframes id="ismam">

                   2分

             點O為DC的中點,DC=2,

             OC=1.

             又

             同理

            

             平面D1AO.      4分

         (II)平面ABCD,

                 

             又平面D1DO.

             ,

            

             在平面D1DO內(nèi),作

             垂足為H,則平面ADD1A1

             線段OH的長為點O到平面ADD1A1的距離.       6分

             平面ABCD,

             在平面ABCD上的射影為DO.

             為側(cè)棱DD1與底面ABCD所成的角,

            

             在

             即點O到平面ADD1A1的距離為    8分

      <center id="ismam"></center>

               平面ABCD,

              

               又平面AOD1,

               又

               為二面角C―AD1―O的平面角      10分

               在

              

               在

              

               取D1C的中點E,連結(jié)AE,

               則

              

              

               在

               二面角C―AD1―O的大小為      12分

        19.解:(I)

                   3分

           (II)因為

              

               歸納得

               則     5分

              

              

                     7分

           (III)當

                     9分

               則

              

                      13分

        20.解:(I)設(shè)

              

              

                      3分

               代入為P點的軌 跡方程.

               當時,P點的軌跡是圓.     6分

           (II)由題設(shè)知直線的方程為

               設(shè)

               聯(lián)立方程組

               消去     8分

        * 方程組有兩個不等解,

              

              

               而

                   10分

               當

               當

               當

               綜上,      13分

        21.解:(1)

                  1分

               依題意有

              

               解得

                    4分

           (2).

               依題意,是方程的兩個根,

              

              

              

                       6分

               設(shè)

               由;

               由

               所以函數(shù)在區(qū)間上是增函數(shù),在區(qū)間[4,6]上是減函數(shù).

               有極大值為96,

               上的最大值為96.

                      9分

           (III)的兩根,

               .

              

               ∴

        =          11分

               ∵,

              

               即

              

               成立          13分

         

         


        同步練習冊答案
        <abbr id="ismam"></abbr>
            <noscript id="ismam"><dl id="ismam"></dl></noscript>
          • <bdo id="ismam"><th id="ismam"></th></bdo>