的條件下.求面積的最大值. 查看更多

 

題目列表(包括答案和解析)

已知△OPQ的面積為S,且·=1,=m,S=m,以O(shè)為中心,P為焦點(diǎn)的橢圓經(jīng)過點(diǎn)Q.

(1)當(dāng)m∈(1,2)時(shí),求||的最大值,并求出此時(shí)的橢圓C方程;

(2)在(1)的條件下,過點(diǎn)P的直線l與橢圓C相交于M、N兩點(diǎn),與橢圓C對(duì)應(yīng)于焦點(diǎn)P的準(zhǔn)線相交于D點(diǎn),且1,2請(qǐng)找出λ1、λ2之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

△ABC中,銳角A的對(duì)邊長(zhǎng)等于2,向量
m
=(1,
3
(2cos2A-1)),向量
n
=(-1,sin2A).
(Ⅰ)若向量
m
n
,求銳角A的大。
(Ⅱ)在(Ⅰ)的條件下,求△ABC面積的最大值.

查看答案和解析>>

已知是圓上滿足條件的兩個(gè)點(diǎn),其中O是坐標(biāo)原點(diǎn),分別過A、B作軸的垂線段,交橢圓點(diǎn),動(dòng)點(diǎn)P滿足.(1)求動(dòng)點(diǎn)P的軌跡方程;(2)設(shè)分別表示的面積,當(dāng)點(diǎn)P在軸的上方,點(diǎn)A在軸的下方時(shí),求+的最大值。

 

查看答案和解析>>

已知是圓上滿足條件的兩個(gè)點(diǎn),其中O是坐標(biāo)原點(diǎn),分別過A、B作軸的垂線段,交橢圓點(diǎn),動(dòng)點(diǎn)P滿足.(1)求動(dòng)點(diǎn)P的軌跡方程;(2)設(shè)分別表示的面積,當(dāng)點(diǎn)P在軸的上方,點(diǎn)A在軸的下方時(shí),求+的最大值。

查看答案和解析>>

已知A、B是圓上滿足條件的兩個(gè)點(diǎn),其中O是坐標(biāo)原點(diǎn),分別過A、B作軸的垂線段,交橢圓點(diǎn),動(dòng)點(diǎn)P滿足.(1)求動(dòng)點(diǎn)P的軌跡方程;(2)設(shè)S1和S2分別表示的面積,當(dāng)點(diǎn)P在x軸的上方,點(diǎn)A在x軸的下方時(shí),求的最大值。

 

查看答案和解析>>

 

一、

DACCA  BDB

二、

9.16    10.2009      11.      12.     

13.    14.3        15.②③

三、

16.解:(1)由余弦定理得:

是以角C為直角的直角三角形.……………………6分

(2)

………………①

………………②

②÷①得

……………………12分

17.解:(1)因?yàn)?sub>……………………………………(2分)

       ……………………………………………………(4分)

      

所以線路信息通暢的概率為。………………………(6分)

   (2)的所有可能取值為4,5,6,7,8。

      

       ……………………………………………………………(9分)

       ∴的分布列為

4

5

6

7

8

P

       …………………………………………………………………………………………(10分)

∴E=4×+5×+6×+7×+8×=6!12分)

18.解:解法一:(1)證明:連結(jié)OC,

ABD為等邊三角形,O為BD的中點(diǎn),∴AO

垂直BD。………………………………………………………………(1分)

       ∴ AO=CO=。………………………………………………………………………(2分)

       在AOC中,AC=,∴AO2+CO2=AC2

∴∠AOC=900,即AO⊥OC。

       ∴BDOC=O,∴AO⊥平面BCD!3分)

   (2)過O作OE垂直BC于E,連結(jié)AE,

    ∵AO⊥平面BCD,∴AE在平面BCD上的射影為OE。

    ∴AE⊥BC。

    ∠AEO為二面角A―BC―D的平面角。………………………………………(7分)

       在RtAEO中,AO=,OE=,

       ∴∠AEO=arctan2。

       二面角A―BC―D的大小為arctan2。

       (3)設(shè)點(diǎn)O到面ACD的距離為∵VO-ACD=VA-OCD,

       在ACD中,AD=CD=2,AC=,

。

       ∴點(diǎn)O到平面ACD的距離為!12分)

解法二:(1)同解法一。

       (2)以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,

       則O(0,0,0),A(0,0,),B(1,0,0),C(0,,0),D(-1,0,0)

       ∵AO⊥平面DCD,

       ∴平面BCD的法向量=(0,0,)!5分)

      <tt id="jemrn"></tt><table id="jemrn"></table>
        1.       

                 由。設(shè)夾角為

                 則。

                 ∴二面角A―BC―D的大小為arccos!8分)

             (3)解:設(shè)平面ACD的法向量為

          !11分)

          設(shè)夾角為,則

          設(shè)O到平面ACD的距離為

          ,

          ∴O到平面ACD的距離為。……………………………………………………(12分)19.解:(1).

          …共線,該直線過點(diǎn)P1(a,a),

          斜率為……………………3分

          當(dāng)時(shí),An是一個(gè)三角形與一個(gè)梯形面積之和(如上圖所示),梯形面積是

          于是

          …………………………7分

          (2)結(jié)合圖象,當(dāng)

          ,……………………10分

          而當(dāng)

          ,

          故當(dāng)1<a>2時(shí),存在正整數(shù)n,使得……………………13分

          20.解:(1)

          設(shè)橢圓C的標(biāo)準(zhǔn)方程為

          為正三角形,

          a=2b,結(jié)合

          ∴所求為……………………2分

          (2)設(shè)P(x,y)M(),N(),

          直線l的方程為得,

          ……………………4分

          ………………6分

          且滿足上述方程,

          ………………7分

          (3)由(2)得, 

          …………………………9分

          ……………………10分

          設(shè)

          面積的最大值為…………………………13分

          21.解:(1)由

          即可求得……………………3分

          (2)當(dāng)>0,

          不等式…(5分)

           

          由于

          ……………………7分

          當(dāng)

          當(dāng)

          當(dāng)

          ,

          于是由;………………9分

          (3)由(2)知,

          在上式中分別令x=再三式作和即得

          所以有……………………13分

           

           


          同步練習(xí)冊(cè)答案