20. 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分13分)有一問(wèn)題,在半小時(shí)內(nèi),甲能解決它的概率是0.5,乙能解決它的概率是,

 如果兩人都試圖獨(dú)立地在半小時(shí)內(nèi)解決它,計(jì)算:w.w.w.k.s.5.u.c.o.m      

   (1)兩人都未解決的概率;

   (2)問(wèn)題得到解決的概率。

查看答案和解析>>

(本小題滿(mǎn)分13分)  已知是等比數(shù)列, ;是等差數(shù)列, , .

(1) 求數(shù)列的通項(xiàng)公式;

(2) 設(shè)+…+,,其中,…試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

(本小題滿(mǎn)分13分) 現(xiàn)有一批貨物由海上從A地運(yùn)往B地,已知貨船的最大航行速度為35海里/小時(shí),A地至B地之間的航行距離約為500海里,每小時(shí)的運(yùn)輸成本由燃料費(fèi)和其余費(fèi)用組成,輪船每小時(shí)的燃料費(fèi)用與輪船速度的平方成正比(比例系數(shù)為0.6),其余費(fèi)用為每小時(shí)960元.

(1)把全程運(yùn)輸成本y(元)表示為速度x(海里/小時(shí))的函數(shù);

(2)為了使全程運(yùn)輸成本最小,輪船應(yīng)以多大速度行駛?

查看答案和解析>>

(本小題滿(mǎn)分13分)

如圖,ABCD的邊長(zhǎng)為2的正方形,直線(xiàn)l與平面ABCD平行,g和F式l上的兩個(gè)不同點(diǎn),且EA=ED,F(xiàn)B=FC, 是平面ABCD內(nèi)的兩點(diǎn),都與平面ABCD垂直,

(Ⅰ)證明:直線(xiàn)垂直且平分線(xiàn)段AD:w.w.w.k.s.5.u.c.o.m       

(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

體ABCDEF的體積。

 

查看答案和解析>>

(本小題滿(mǎn)分13分)兩個(gè)人射擊,甲射擊一次中靶概率是p1,乙射擊一次中靶概率是p2,已知 , 是方程x2-5x + 6 = 0的根,若兩人各射擊5次,甲的方差是 .(1) 求 p1、p2的值;(2) 兩人各射擊2次,中靶至少3次就算完成目的,則完成目的的概率是多少?(3) 兩人各射擊一次,中靶至少一次就算完成目的,則完成目的的概率是多少?

查看答案和解析>>

 

一、

DACCA  BDB

二、

9.16    10.2009      11.      12.     

13.    14.3        15.②③

三、

16.解:(1)由余弦定理得:

是以角C為直角的直角三角形.……………………6分

(2)

………………①

………………②

②÷①得

……………………12分

17.解:(1)因?yàn)?sub>……………………………………(2分)

       ……………………………………………………(4分)

      

所以線(xiàn)路信息通暢的概率為。………………………(6分)

   (2)的所有可能取值為4,5,6,7,8。

      

       ……………………………………………………………(9分)

       ∴的分布列為

4

5

6

7

8

P

       …………………………………………………………………………………………(10分)

∴E=4×+5×+6×+7×+8×=6!12分)

18.解:解法一:(1)證明:連結(jié)OC,

ABD為等邊三角形,O為BD的中點(diǎn),∴AO

垂直BD。………………………………………………………………(1分)

       ∴ AO=CO=!2分)

       在AOC中,AC=,∴AO2+CO2=AC2,

∴∠AOC=900,即AO⊥OC。

       ∴BDOC=O,∴AO⊥平面BCD。…………………………………………………(3分)

   (2)過(guò)O作OE垂直BC于E,連結(jié)AE,

    ∵AO⊥平面BCD,∴AE在平面BCD上的射影為OE。

    ∴AE⊥BC。

    ∠AEO為二面角A―BC―D的平面角!7分)

       在RtAEO中,AO=,OE=

,

       ∴∠AEO=arctan2。

       二面角A―BC―D的大小為arctan2。

       (3)設(shè)點(diǎn)O到面ACD的距離為∵VO-ACD=VA-OCD,

       在ACD中,AD=CD=2,AC=,

。

       ∴點(diǎn)O到平面ACD的距離為!12分)

解法二:(1)同解法一。

       (2)以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,

       則O(0,0,0),A(0,0,),B(1,0,0),C(0,,0),D(-1,0,0)

       ∵AO⊥平面DCD,

       ∴平面BCD的法向量=(0,0,)。…………………………………………(5分)

       ,

       由。設(shè)夾角為,

       則

       ∴二面角A―BC―D的大小為arccos。…………………………………………(8分)

   (3)解:設(shè)平面ACD的法向量為

。………………………………(11分)

設(shè)夾角為,則

設(shè)O到平面ACD的距離為

,

∴O到平面ACD的距離為。……………………………………………………(12分)19.解:(1).

…共線(xiàn),該直線(xiàn)過(guò)點(diǎn)P1(a,a),

斜率為……………………3分

當(dāng)時(shí),An是一個(gè)三角形與一個(gè)梯形面積之和(如上圖所示),梯形面積是

于是

…………………………7分

(2)結(jié)合圖象,當(dāng)

,……………………10分

而當(dāng)

,

故當(dāng)1<a>2時(shí),存在正整數(shù)n,使得……………………13分

20.解:(1)

設(shè)橢圓C的標(biāo)準(zhǔn)方程為

為正三角形,

a=2b,結(jié)合

∴所求為……………………2分

(2)設(shè)P(x,y)M(),N(),

直線(xiàn)l的方程為得,

……………………4分

………………6分

且滿(mǎn)足上述方程,

………………7分

(3)由(2)得, 

…………………………9分

……………………10分

設(shè)

面積的最大值為…………………………13分

21.解:(1)由

即可求得……………………3分

(2)當(dāng)>0,

不等式…(5分)

 

由于

……………………7分

當(dāng)

當(dāng)

當(dāng)

,

于是由;………………9分

(3)由(2)知,

在上式中分別令x=再三式作和即得

所以有……………………13分

 

 


同步練習(xí)冊(cè)答案