題目列表(包括答案和解析)
已知函數(shù)在區(qū)間[0,1]上是減函數(shù),則實(shí)數(shù)的取值范圍是 ( )
A.(0,1) B.(1,2) C.(0,2) D.
已知函數(shù)在區(qū)間[0,1]上單調(diào)遞增,在區(qū)間[1,2]上單調(diào)遞減;
(1)求a的值;
(2)求證:x=1是該函數(shù)的一條對稱軸;
(3)是否存在實(shí)數(shù)b,使函數(shù)的圖象與函數(shù)f(x)的圖象恰好有兩個交點(diǎn)?若存在,求出b的值;若不存在,請說明理由.
已知函數(shù)在區(qū)間上是減函數(shù),則的最小值是( )
A. 1 B. 2 C. 3 D .4
已知函數(shù)在區(qū)間[0,1]上單調(diào)遞增,在區(qū)間[1,2]上單調(diào)遞減。
(1)求的值;
(2)若斜率為24的直線是曲線的切線,求此直線方程;
(3)是否存在實(shí)數(shù)b,使得函數(shù)的圖象與函數(shù)的圖象恰有2個不同交點(diǎn)?若存在,求出實(shí)數(shù)b的值;若不存在,試說明理由.
已知函數(shù)在區(qū)間上是減函數(shù),則的最小值是( )
A.0 B .1 C .2 D.3
一、
二、
9.16 10.2009 11. 12.
13. 14.3 15.②③
三、
16.解:(1)由余弦定理得:
是以角C為直角的直角三角形.……………………6分
(2)中
………………①
………………②
②÷①得,
則……………………12分
17.解:(1)因?yàn)?sub>……………………………………(2分)
……………………………………………………(4分)
所以線路信息通暢的概率為。………………………(6分)
(2)的所有可能取值為4,5,6,7,8。
……………………………………………………………(9分)
∴的分布列為
4
5
6
7
8
P
…………………………………………………………………………………………(10分)
∴E=4×+5×+6×+7×+8×=6!12分)
18.解:解法一:(1)證明:連結(jié)OC,
∵ABD為等邊三角形,O為BD的中點(diǎn),∴AO
垂直BD!1分)
∴ AO=CO=。………………………………………………………………………(2分)
在AOC中,AC=,∴AO2+CO2=AC2,
∴∠AOC=900,即AO⊥OC。
∴BDOC=O,∴AO⊥平面BCD。…………………………………………………(3分)
(2)過O作OE垂直BC于E,連結(jié)AE,
∵AO⊥平面BCD,∴AE在平面BCD上的射影為OE。
∴AE⊥BC。
∠AEO為二面角A―BC―D的平面角!7分)
在RtAEO中,AO=,OE=,
∠,
∴∠AEO=arctan2。
二面角A―BC―D的大小為arctan2。
(3)設(shè)點(diǎn)O到面ACD的距離為∵VO-ACD=VA-OCD,
∴。
在ACD中,AD=CD=2,AC=,
。
|