(Ⅱ)若從袋子里每次摸出一個(gè)球.看清顏色后放回.連續(xù)摸3次.求得分的概率分布列及數(shù)學(xué)期望. 查看更多

 

題目列表(包括答案和解析)

現(xiàn)有一個(gè)放有9個(gè)球的袋子,其中紅球4個(gè),白球3個(gè),黃球2個(gè),并且這些球除顏色外完全相同.
(Ⅰ) 現(xiàn)從袋子里任意摸出3個(gè)球,求其中有兩球同色的概率;
(Ⅱ) 若在袋子里任意摸球,取后不放回,每次只摸出一球,直到摸出有兩球同色為止,求摸球次數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

現(xiàn)有一個(gè)放有9個(gè)球的袋子,其中紅球4個(gè),白球3個(gè),黃球2個(gè),并且這些球除顏色外完全相同.
(Ⅰ) 現(xiàn)從袋子里任意摸出3個(gè)球,求其中有兩球同色的概率;
(Ⅱ) 若在袋子里任意摸球,取后不放回,每次只摸出一球,直到摸出有兩球同色為止,求摸球次數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

現(xiàn)有一個(gè)放有9個(gè)球的袋子,其中紅球4個(gè),白球3個(gè),黃球2個(gè),并且這些球除顏色外完全相同.
(Ⅰ) 現(xiàn)從袋子里任意摸出3個(gè)球,求其中有兩球同色的概率;
(Ⅱ) 若在袋子里任意摸球,取后不放回,每次只摸出一球,直到摸出有兩球同色為止,求摸球次數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

一袋子中有大小相同的2個(gè)紅球和3個(gè)黑球,從袋子里隨機(jī)取球取到每個(gè)球的可能性是相同的,設(shè)取到一個(gè)紅球得2分,取到一個(gè)黑球得1分.

(Ⅰ)若從袋子里一次隨機(jī)取出3個(gè)球,求得4分的概率;

(Ⅱ)若從袋子里每次摸出一個(gè)球,看清顏色后放回,連續(xù)摸2次,求得分的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

一袋子中有大小相同的2個(gè)紅球和3個(gè)黑球,從袋子里隨機(jī)取球,取到每個(gè)球的可能性是相同的,設(shè)取到一個(gè)紅球得2分,取到一個(gè)黑球得1分.
(Ⅰ)若從袋子里一次隨機(jī)取出3個(gè)球,求得4分的概率;
(Ⅱ)若從袋子里每次摸出一個(gè)球,看清顏色后放回,連續(xù)摸3次,求得分ξ的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

 

一、選擇題(每小題5分,共12小題,滿分60分)

2,4,6

二、填空題(每小題4分,共4小題,滿分16分)

13.800    14.    15.625    16.②④

三、解答題(本大題共6小題,滿分74分)

17.解

   (Ⅰ)由題意知

……………………3分

……………………4分

的夾角

……………………6分

(Ⅱ)

……………………9分

有最小值。

的最小值是……………………12分

18.解:

(Ⅰ)設(shè)“一次取出3個(gè)球得4分”的事件記為A,它表示取出的球中有1個(gè)紅球和2個(gè)黑球的情況

……………………4分

(Ⅱ)由題意,的可能取值為3、4、5、6。因?yàn)槭怯蟹呕氐厝∏,所以每次取到紅球的概率為……………………6分

的分布列為

3

4

5

6

P

……………………10分

19.解:

連接BD交AC于O,則BD⊥AC,

連接A1O

在△AA1O中,AA1=2,AO=1,

∠A1AO=60°

∴A1O2=AA12+AO2-2AA1?Aocos60°=3

∴AO2+A1O2=A12

∴A1O⊥AO,由于平面AA1C1C

平面ABCD,

所以A1O⊥底面ABCD

∴以O(shè)B、OC、OA1所在直線為x軸、y軸、z軸建立如圖所示空間直角坐標(biāo)系,則A(0,-1,0),B(,0,0),C(0,1,0),D(-,0,0),A1(0,0,

……………………2分

(Ⅰ)由于

∴BD⊥AA1……………………4分

  (Ⅱ)由于OB⊥平面AA1C1C

∴平面AA1C1C的法向量

設(shè)⊥平面AA1D

得到……………………6分

所以二面角D―A1A―C的平面角的余弦值是……………………8分

(Ⅲ)假設(shè)在直線CC1上存在點(diǎn)P,使BP//平面DA1C1

設(shè)

……………………9分

設(shè)

設(shè)

得到……………………10分

又因?yàn)?sub>平面DA1C1

?

即點(diǎn)P在C1C的延長(zhǎng)線上且使C1C=CP……………………12分

法二:在A1作A1O⊥AC于點(diǎn)O,由于平面AA1C­1C⊥平面

ABCD,由面面垂直的性質(zhì)定理知,A1O⊥平面ABCD,

又底面為菱形,所以AC⊥BD

  • ……………………4分

    (Ⅱ)在△AA1O中,A1A=2,∠A1AO=60°

    ∴AO=AA1?cos60°=1

    所以O(shè)是AC的中點(diǎn),由于底面ABCD為菱形,所以

    O也是BD中點(diǎn)

    由(Ⅰ)可知DO⊥平面AA1C

    過(guò)O作OE⊥AA1于E點(diǎn),連接OE,則AA1⊥DE

    則∠DEO為二面角D―AA1―C的平面角

    ……………………6分

    在菱形ABCD中,AB=2,∠ABC=60°

    ∴AC=AB=BC=2

    ∴AO=1,DO=

    在Rt△AEO中,OE=OA?sin∠EAO=

    DE=

    ∴cos∠DEO=

    ∴二面角D―A1A―C的平面角的余弦值是……………………8分

    (Ⅲ)存在這樣的點(diǎn)P

    連接B1C,因?yàn)锳1B1ABDC

    ∴四邊形A1B1CD為平行四邊形。

    ∴A1D//B1C

    在C1C的延長(zhǎng)線上取點(diǎn)P,使C1C=CP,連接BP……………………10分

    因B­1­BCC1,……………………12分

    ∴BB1CP

    ∴四邊形BB1CP為平行四邊形

    則BP//B1C

    ∴BP//A1D

    ∴BP//平面DA1C1

    20.解:

    (Ⅰ)

    ……………………2分

    當(dāng)是增函數(shù)

    當(dāng)是減函數(shù)……………………4分

    ……………………6分

    (Ⅲ)(i)當(dāng)時(shí),,由(Ⅰ)知上是增函數(shù),在上是減函數(shù)

    ……………………7分

    又當(dāng)時(shí),所以的圖象在上有公共點(diǎn),等價(jià)于…………8分

    解得…………………9分

    (ii)當(dāng)時(shí),上是增函數(shù),

    所以原問(wèn)題等價(jià)于

    ∴無(wú)解………………11分

     

     


    同步練習(xí)冊(cè)答案