題目列表(包括答案和解析)
已知函數(shù),
(1)求函數(shù)的定義域;
(2)求函數(shù)在區(qū)間
上的最小值;
(3)已知,命題p:關(guān)于x的不等式
對函數(shù)
的定義域上的任意
恒成立;命題q:指數(shù)函數(shù)
是增函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.
【解析】第一問中,利用由 即
第二問中,,
得:
,
第三問中,由在函數(shù)的定義域上
的任意
,
,當(dāng)且僅當(dāng)
時等號成立。當(dāng)命題p為真時,
;而命題q為真時:指數(shù)函數(shù)
.因為“p或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時;當(dāng)命題p為假,命題q為真時分為兩種情況討論即可 。
解:(1)由 即
(2),
得:
,
(3)由在函數(shù)的定義域上
的任意
,
,當(dāng)且僅當(dāng)
時等號成立。當(dāng)命題p為真時,
;而命題q為真時:指數(shù)函數(shù)
.因為“p或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時,
當(dāng)命題p為假,命題q為真時,,
所以
仔細閱讀下面問題的解法:
設(shè)A=[0, 1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍。
解:由已知可得 a < 21-x
令f(x)= 21-x ,∵不等式a <21-x在A上有解,
∴a <f(x)在A上的最大值.
又f(x)在[0,1]上單調(diào)遞減,f(x)max =f(0)=2. ∴實數(shù)a的取值范圍為a<2.
研究學(xué)習(xí)以上問題的解法,請解決下面的問題:
(1)已知函數(shù)f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對于(1)中的A,設(shè)g(x)=,x∈A,試判斷g(x)的單調(diào)性(寫明理由,不必證明);
(3)若B ={x|>2x+a–5},且對于(1)中的A,A∩B≠F,求實數(shù)a的取值范圍。
已知函數(shù).(
)
(1)若在區(qū)間
上單調(diào)遞增,求實數(shù)
的取值范圍;
(2)若在區(qū)間上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用在區(qū)間
上單調(diào)遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進而得到范圍;第二問中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.然后求解得到。
解:(1)在區(qū)間
上單調(diào)遞增,
則在區(qū)間
上恒成立. …………3分
即,而當(dāng)
時,
,故
.
…………5分
所以.
…………6分
(2)令,定義域為
.
在區(qū)間上,函數(shù)
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.
∵ …………9分
① 若,令
,得極值點
,
,
當(dāng),即
時,在(
,+∞)上有
,此時
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當(dāng),即
時,同理可知,
在區(qū)間
上遞增,
有,也不合題意;
…………11分
② 若,則有
,此時在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足
,
由此求得的范圍是
. …………13分
綜合①②可知,當(dāng)時,函數(shù)
的圖象恒在直線
下方.
10-x |
10+x |
10-x |
10+x |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com