(Ⅱ)設(shè)點(diǎn)C的軌跡與雙曲線交于兩點(diǎn)M.N.且以MN為直徑的圓過原點(diǎn).求證, 查看更多

 

題目列表(包括答案和解析)

設(shè)雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的離心率為e,右準(zhǔn)線l與兩條漸近線交于P,Q兩點(diǎn),右焦點(diǎn)為F,且△PQF為等邊三角形.
(1)求雙曲線C的離心率e的值;
(2)若雙曲線C被直線y=ax+b截得的弦長(zhǎng)為
b2e2
a
,求雙曲線C的方程;
(3)設(shè)雙曲線C經(jīng)過點(diǎn)(1,0),以F為左焦點(diǎn),L為左準(zhǔn)線的橢圓,其短軸的端點(diǎn)為B,求BF中點(diǎn)的軌跡方程.

查看答案和解析>>

設(shè)MN是雙曲線
x2
4
-
y2
3
=1
的弦,且MN與x軸垂直,A1、A2是雙曲線的左、右頂點(diǎn).
(Ⅰ)求直線MA1和NA2的交點(diǎn)的軌跡C的方程;
(Ⅱ)設(shè)直線y=x-1與軌跡C交于A、B兩點(diǎn),若軌跡C上的點(diǎn)P滿足
.
OP
.
OA
.
OB
(O為坐標(biāo)原點(diǎn),λ,μ∈R)
求證:λ2+μ2-
10
7
λμ
為定值,并求出這個(gè)定值.

查看答案和解析>>

設(shè)MN是雙曲線數(shù)學(xué)公式的弦,且MN與x軸垂直,A1、A2是雙曲線的左、右頂點(diǎn).
(Ⅰ)求直線MA1和NA2的交點(diǎn)的軌跡C的方程;
(Ⅱ)設(shè)直線y=x-1與軌跡C交于A、B兩點(diǎn),若軌跡C上的點(diǎn)P滿足數(shù)學(xué)公式(O為坐標(biāo)原點(diǎn),λ,μ∈R)
求證:數(shù)學(xué)公式為定值,并求出這個(gè)定值.

查看答案和解析>>

設(shè)MN是雙曲線
x2
4
-
y2
3
=1
的弦,且MN與x軸垂直,A1、A2是雙曲線的左、右頂點(diǎn).
(Ⅰ)求直線MA1和NA2的交點(diǎn)的軌跡C的方程;
(Ⅱ)設(shè)直線y=x-1與軌跡C交于A、B兩點(diǎn),若軌跡C上的點(diǎn)P滿足
.
OP
.
OA
.
OB
(O為坐標(biāo)原點(diǎn),λ,μ∈R)
求證:λ2+μ2-
10
7
λμ
為定值,并求出這個(gè)定值.

查看答案和解析>>

設(shè)MN是雙曲線的弦,且MN與x軸垂直,A1、A2是雙曲線的左、右頂點(diǎn).
(Ⅰ)求直線MA1和NA2的交點(diǎn)的軌跡C的方程;
(Ⅱ)設(shè)直線y=x-1與軌跡C交于A、B兩點(diǎn),若軌跡C上的點(diǎn)P滿足(O為坐標(biāo)原點(diǎn),λ,μ∈R)
求證:為定值,并求出這個(gè)定值.

查看答案和解析>>

一.選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

A

D

C

B

B

C

A

C

B

A

二.填空題

11.      12. ②     13.       14. 120     15.

三.解答題

16.解:(Ⅰ).  …………………………………3分

,得. ………………………………5分

(Ⅱ)由(Ⅰ)得.  ………………8分

,得.

當(dāng),即時(shí),函數(shù) 有最大值.  ……………………12分

17.解:設(shè)此工人一個(gè)季度里所得獎(jiǎng)金為,則是一個(gè)離散型隨機(jī)變量.由于該工人每月完成任務(wù)與否是等可能的,所以他每月完成任務(wù)的概率等于.   …………………2分

所以,  ,,

,.    …………8分

于是.

所以此工人在一個(gè)季度里所得獎(jiǎng)金的期望為153. 75元.     ……………………12分

18.解:(Ⅰ)取BC的中點(diǎn)H,連結(jié)PH, 連結(jié)AH交BD于E.

.    ……………………………2分

又面,.

  ,.

,.

,即.        ………………………………………………4分

因?yàn)锳H為PA在平面上的射影,.   ……………………………6分

(Ⅱ)連結(jié)PE,則由(Ⅰ)知.

為所求二面角的平面角.       ……………………………………………8分

中,由,求得.

.

即所求二面角的正切值為.     …………………………………………………12分

另解:(Ⅰ)建系設(shè)點(diǎn)正確2分,求出兩個(gè)法向量2分,判斷正確2分;

(Ⅱ)求出兩個(gè)法向量3分,求出余弦值2分,求出正切值1分.

19. 解:(Ⅰ)設(shè),則

,.

即點(diǎn)C的軌跡方程為.    …………………………………………………3分

(Ⅱ)由題意.

. ……………5分

.

,

.       ……………………………8分

(Ⅲ)..

.

∴雙曲線實(shí)軸長(zhǎng)的取值范圍是.   ………………………………………………12分

20.解: (Ⅰ)由已知得的定義域?yàn)?sub>,.   ………………2分

由題意得對(duì)一切恒成立,

      ……………………………………………5分

當(dāng)時(shí),,

.故.      …………………………………………7分

(Ⅱ)假設(shè)存在正實(shí)數(shù),使得成立.

.  …………………9分

,得,.由于,故應(yīng)舍去.

當(dāng)時(shí),    ………………………………………11分

,解得.   …………………………13分

另解: 假設(shè)存在正實(shí)數(shù),使得成立.

設(shè),則.    ………………………9分

,解得.

因?yàn)?sub>,上單調(diào)遞增,在上單調(diào)遞減.

.    … ……………………………………11分

,解得.   …………………………13分

21.解:(Ⅰ)由已知,得.  

則數(shù)列是公比為2的等比數(shù)列.    ……………………………………………2分

.   ……………………………………………4分

(Ⅱ).   …………………6分

恒成立,則

解得

故存在常數(shù)A,B,C,滿足條件.       …………………………………………9分

   (Ⅲ)由(Ⅱ)知:

.    …………………14分

=

 

 


同步練習(xí)冊(cè)答案