2.你怎樣理解反函數(shù)? 課后思考: 我們知道>0與對數(shù)函數(shù)>0且互為反函數(shù).探索下列問題. 查看更多

 

題目列表(包括答案和解析)

閱讀下列材料,回答有關問題:

    2005年7月28日,BP位于美國得克薩斯市的煉油廠晚間發(fā)生爆炸,同樣在7月28日,BP在其大本營英國北海的深水油田也發(fā)生了嚴重火災.受其影響,全球油價7月29日再度突破60美元大關.隨后沙特國王死亡引起對沙特政局的擔憂,接下來一連串的颶風襲來,最后是颶風“卡特里娜”一舉使油價突破70美元的大關,創(chuàng)下70.85美元/桶的歷史記錄.

    國際能源署IEA預計,到2005年底,颶風導致美國損失的原油以及天然氣液化產(chǎn)量約1.4億桶,成品油產(chǎn)量損失1.63億桶.

    進入2006年,先是俄羅斯與烏克蘭的石油管道問題,隨后是基地組織將要襲擊美國的威脅、尼日利亞的恐怖襲擊以及伊朗的核問題不斷出現(xiàn),在美國氣溫高于往年平均氣溫導致需求不太旺盛的情況下,不到一個月的時間就將油價推高12美元/桶.可見突發(fā)事件對油價影響的巨大.

    在2005年原油的第二輪上漲中,基金持有的凈多單數(shù)量遠低于第一輪時的凈多單,但是原油上漲的幅度遠大于第一輪上漲的幅度,2005年9月以后基金絕大部分時間持有凈空單,但是原油價格仍在高位,就是因為不斷出現(xiàn)的突發(fā)消息助推油價.政治因素與突發(fā)事件導致的對原油供應不足的擔憂,在原油上漲中可能起到20%—25%的作用.

(1)怎樣理解“可見突發(fā)事件對油價影響的巨大”這句話的含義,如果是你,你將怎樣得出這樣的結論?

(2)為了盡量避免經(jīng)濟損失,我們應該怎樣對經(jīng)濟進行統(tǒng)計分析?

查看答案和解析>>

閱讀與理解:asinx+bcosx=
a2+b2
sin(x+φ)
給出公式:
我們可以根據(jù)公式將函數(shù)g(x)=sinx+
3
cosx
化為:g(x)=2(
1
2
sinx+
3
2
cosx)=2(sinxcos
π
3
+cosxsin
π
3
)=2sin(x+
π
3
)

(1)根據(jù)你的理解將函數(shù)f(x)=
3
2
sinx+
3
2
cosx
化為f(x)=Asin(ωx+φ)的形式.
(2)求出上面函數(shù)f(x)的最小正周期、對稱中心及單調(diào)遞增區(qū)間.

查看答案和解析>>

閱讀與理解:
給出公式:sin(α+β)=sinαcosβ+cosαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;我們可以根據(jù)公式將函數(shù)g(x)=sinx+
3
cosx化為:g(x)=2(
1
2
sinx+
3
2
cosx)=2(sinxcos
π
3
+cosxsin
π
3
)=2sin(x+
π
3

(1)根據(jù)你的理解將函數(shù)f(x)=sinx+cos(x-
π
6
)化為f(x)=Asin(ωx+φ)的形式.
(2)求出上題函數(shù)f(x)的最小正周期、對稱中心及單調(diào)遞增區(qū)間.

查看答案和解析>>

給出公式:sin(α+β)=sinαcosβ+cosαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;
我們可以根據(jù)公式將函數(shù)g(x)=sinx+
3
cosx
化為:g(x)=2(
1
2
sinx+
3
2
cosx)=2(sinxcos
π
3
+cosxsin
π
3
)=2sin(x+
π
3
)
的形式;
(1)根據(jù)你的理解,試將函數(shù)f(x)=sinx+cos(x-
π
6
)
化為f(x)=Asin(ωx+φ)或f(x)=Acos(ωx+φ)的形式.
(2)求出(1)中函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間.
(3)求出(1)中的函數(shù)f(x)在區(qū)間[0,
π
2
]
上的最大值和最小值以及相應的x的值.

查看答案和解析>>

閱讀與理解:數(shù)學公式給出公式:
我們可以根據(jù)公式將函數(shù)數(shù)學公式化為:數(shù)學公式
(1)根據(jù)你的理解將函數(shù)數(shù)學公式化為f(x)=Asin(ωx+φ)的形式.
(2)求出上面函數(shù)f(x)的最小正周期、對稱中心及單調(diào)遞增區(qū)間.

查看答案和解析>>


同步練習冊答案