兩個相對性原理的區(qū)別 查看更多

 

題目列表(包括答案和解析)

第十部分 磁場

第一講 基本知識介紹

《磁場》部分在奧賽考剛中的考點很少,和高考要求的區(qū)別不是很大,只是在兩處有深化:a、電流的磁場引進定量計算;b、對帶電粒子在復合場中的運動進行了更深入的分析。

一、磁場與安培力

1、磁場

a、永磁體、電流磁場→磁現象的電本質

b、磁感強度、磁通量

c、穩(wěn)恒電流的磁場

*畢奧-薩伐爾定律(Biot-Savart law):對于電流強度為I 、長度為dI的導體元段,在距離為r的點激發(fā)的“元磁感應強度”為dB 。矢量式d= k,(d表示導體元段的方向沿電流的方向、為導體元段到考查點的方向矢量);或用大小關系式dB = k結合安培定則尋求方向亦可。其中 k = 1.0×10?7N/A2 。應用畢薩定律再結合矢量疊加原理,可以求解任何形狀導線在任何位置激發(fā)的磁感強度。

畢薩定律應用在“無限長”直導線的結論:B = 2k ;

*畢薩定律應用在環(huán)形電流垂直中心軸線上的結論:B = 2πkI 

*畢薩定律應用在“無限長”螺線管內部的結論:B = 2πknI 。其中n為單位長度螺線管的匝數。

2、安培力

a、對直導體,矢量式為 = I;或表達為大小關系式 F = BILsinθ再結合“左手定則”解決方向問題(θ為B與L的夾角)。

b、彎曲導體的安培力

⑴整體合力

折線導體所受安培力的合力等于連接始末端連線導體(電流不變)的的安培力。

證明:參照圖9-1,令MN段導體的安培力F1與NO段導體的安培力F2的合力為F,則F的大小為

F = 

  = BI

  = BI

關于F的方向,由于ΔFF2P∽ΔMNO,可以證明圖9-1中的兩個灰色三角形相似,這也就證明了F是垂直MO的,再由于ΔPMO是等腰三角形(這個證明很容易),故F在MO上的垂足就是MO的中點了。

證畢。

由于連續(xù)彎曲的導體可以看成是無窮多元段直線導體的折合,所以,關于折線導體整體合力的結論也適用于彎曲導體。(說明:這個結論只適用于勻強磁場。)

⑵導體的內張力

彎曲導體在平衡或加速的情形下,均會出現內張力,具體分析時,可將導體在被考查點切斷,再將被切斷的某一部分隔離,列平衡方程或動力學方程求解。

c、勻強磁場對線圈的轉矩

如圖9-2所示,當一個矩形線圈(線圈面積為S、通以恒定電流I)放入勻強磁場中,且磁場B的方向平行線圈平面時,線圈受安培力將轉動(并自動選擇垂直B的中心軸OO′,因為質心無加速度),此瞬時的力矩為

M = BIS

幾種情形的討論——

⑴增加匝數至N ,則 M = NBIS ;

⑵轉軸平移,結論不變(證明從略);

⑶線圈形狀改變,結論不變(證明從略);

*⑷磁場平行線圈平面相對原磁場方向旋轉α角,則M = BIScosα ,如圖9-3;

證明:當α = 90°時,顯然M = 0 ,而磁場是可以分解的,只有垂直轉軸的的分量Bcosα才能產生力矩…

⑸磁場B垂直O(jiān)O′軸相對線圈平面旋轉β角,則M = BIScosβ ,如圖9-4。

證明:當β = 90°時,顯然M = 0 ,而磁場是可以分解的,只有平行線圈平面的的分量Bcosβ才能產生力矩…

說明:在默認的情況下,討論線圈的轉矩時,認為線圈的轉軸垂直磁場。如果沒有人為設定,而是讓安培力自行選定轉軸,這時的力矩稱為力偶矩。

二、洛侖茲力

1、概念與規(guī)律

a、 = q,或展開為f = qvBsinθ再結合左、右手定則確定方向(其中θ為的夾角)。安培力是大量帶電粒子所受洛侖茲力的宏觀體現。

b、能量性質

由于總垂直確定的平面,故總垂直 ,只能起到改變速度方向的作用。結論:洛侖茲力可對帶電粒子形成沖量,卻不可能做功;颍郝鍋銎澚墒箮щ娏W拥膭恿堪l(fā)生改變卻不能使其動能發(fā)生改變。

問題:安培力可以做功,為什么洛侖茲力不能做功?

解說:應該注意“安培力是大量帶電粒子所受洛侖茲力的宏觀體現”這句話的確切含義——“宏觀體現”和“完全相等”是有區(qū)別的。我們可以分兩種情形看這個問題:(1)導體靜止時,所有粒子的洛侖茲力的合力等于安培力(這個證明從略);(2)導體運動時,粒子參與的是沿導體棒的運動v1和導體運動v2的合運動,其合速度為v ,這時的洛侖茲力f垂直v而安培力垂直導體棒,它們是不可能相等的,只能說安培力是洛侖茲力的分力f1 = qv1B的合力(見圖9-5)。

很顯然,f1的合力(安培力)做正功,而f不做功(或者說f1的正功和f2的負功的代數和為零)。(事實上,由于電子定向移動速率v1在10?5m/s數量級,而v2一般都在10?2m/s數量級以上,致使f1只是f的一個極小分量。)

☆如果從能量的角度看這個問題,當導體棒放在光滑的導軌上時(參看圖9-6),導體棒必獲得動能,這個動能是怎么轉化來的呢?

若先將導體棒卡住,回路中形成穩(wěn)恒的電流,電流的功轉化為回路的焦耳熱。而將導體棒釋放后,導體棒受安培力加速,將形成感應電動勢(反電動勢)。動力學分析可知,導體棒的最后穩(wěn)定狀態(tài)是勻速運動(感應電動勢等于電源電動勢,回路電流為零)。由于達到穩(wěn)定速度前的回路電流是逐漸減小的,故在相同時間內發(fā)的焦耳熱將比導體棒被卡住時少。所以,導體棒動能的增加是以回路焦耳熱的減少為代價的。

2、僅受洛侖茲力的帶電粒子運動

a、時,勻速圓周運動,半徑r =  ,周期T = 

b、成一般夾角θ時,做等螺距螺旋運動,半徑r =  ,螺距d = 

這個結論的證明一般是將分解…(過程從略)。

☆但也有一個問題,如果將分解(成垂直速度分量B2和平行速度分量B1 ,如圖9-7所示),粒子的運動情形似乎就不一樣了——在垂直B2的平面內做圓周運動?

其實,在圖9-7中,B1平行v只是一種暫時的現象,一旦受B2的洛侖茲力作用,v改變方向后就不再平行B1了。當B1施加了洛侖茲力后,粒子的“圓周運動”就無法達成了。(而在分解v的處理中,這種局面是不會出現的。)

3、磁聚焦

a、結構:見圖9-8,K和G分別為陰極和控制極,A為陽極加共軸限制膜片,螺線管提供勻強磁場。

b、原理:由于控制極和共軸膜片的存在,電子進磁場的發(fā)散角極小,即速度和磁場的夾角θ極小,各粒子做螺旋運動時可以認為螺距彼此相等(半徑可以不等),故所有粒子會“聚焦”在熒光屏上的P點。

4、回旋加速器

a、結構&原理(注意加速時間應忽略)

b、磁場與交變電場頻率的關系

因回旋周期T和交變電場周期T′必相等,故 =

c、最大速度 vmax = = 2πRf

5、質譜儀

速度選擇器&粒子圓周運動,和高考要求相同。

第二講 典型例題解析

一、磁場與安培力的計算

【例題1】兩根無限長的平行直導線a、b相距40cm,通過電流的大小都是3.0A,方向相反。試求位于兩根導線之間且在兩導線所在平面內的、與a導線相距10cm的P點的磁感強度。

【解說】這是一個關于畢薩定律的簡單應用。解題過程從略。

【答案】大小為8.0×10?6T ,方向在圖9-9中垂直紙面向外。

【例題2】半徑為R ,通有電流I的圓形線圈,放在磁感強度大小為B 、方向垂直線圈平面的勻強磁場中,求由于安培力而引起的線圈內張力。

【解說】本題有兩種解法。

方法一:隔離一小段弧,對應圓心角θ ,則弧長L = θR 。因為θ 

查看答案和解析>>

第九部分 穩(wěn)恒電流

第一講 基本知識介紹

第八部分《穩(wěn)恒電流》包括兩大塊:一是“恒定電流”,二是“物質的導電性”。前者是對于電路的外部計算,后者則是深入微觀空間,去解釋電流的成因和比較不同種類的物質導電的情形有什么區(qū)別。

應該說,第一塊的知識和高考考綱對應得比較好,深化的部分是對復雜電路的計算(引入了一些新的處理手段)。第二塊雖是全新的內容,但近幾年的考試已經很少涉及,以至于很多奧賽培訓資料都把它刪掉了。鑒于在奧賽考綱中這部分內容還保留著,我們還是想粗略地介紹一下。

一、歐姆定律

1、電阻定律

a、電阻定律 R = ρ

b、金屬的電阻率 ρ = ρ0(1 + αt)

2、歐姆定律

a、外電路歐姆定律 U = IR ,順著電流方向電勢降落

b、含源電路歐姆定律

在如圖8-1所示的含源電路中,從A點到B點,遵照原則:①遇電阻,順電流方向電勢降落(逆電流方向電勢升高)②遇電源,正極到負極電勢降落,負極到正極電勢升高(與電流方向無關),可以得到以下關系

UA ? IR ? ε ? Ir = UB 

這就是含源電路歐姆定律。

c、閉合電路歐姆定律

在圖8-1中,若將A、B兩點短接,則電流方向只可能向左,含源電路歐姆定律成為

UA + IR ? ε + Ir = UB = UA

 ε = IR + Ir ,或 I = 

這就是閉合電路歐姆定律。值得注意的的是:①對于復雜電路,“干路電流I”不能做絕對的理解(任何要考察的一條路均可視為干路);②電源的概念也是相對的,它可以是多個電源的串、并聯(lián),也可以是電源和電阻組成的系統(tǒng);③外電阻R可以是多個電阻的串、并聯(lián)或混聯(lián),但不能包含電源。

二、復雜電路的計算

1、戴維南定理:一個由獨立源、線性電阻、線性受控源組成的二端網絡,可以用一個電壓源和電阻串聯(lián)的二端網絡來等效。(事實上,也可等效為“電流源和電阻并聯(lián)的的二端網絡”——這就成了諾頓定理。)

應用方法:其等效電路的電壓源的電動勢等于網絡的開路電壓,其串聯(lián)電阻等于從端鈕看進去該網絡中所有獨立源為零值時的等效電阻。

2、基爾霍夫(克希科夫)定律

a、基爾霍夫第一定律:在任一時刻流入電路中某一分節(jié)點的電流強度的總和,等于從該點流出的電流強度的總和。

例如,在圖8-2中,針對節(jié)點P ,有

I2 + I3 = I1 

基爾霍夫第一定律也被稱為“節(jié)點電流定律”,它是電荷受恒定律在電路中的具體體現。

對于基爾霍夫第一定律的理解,近來已經拓展為:流入電路中某一“包容塊”的電流強度的總和,等于從該“包容塊”流出的電流強度的總和。

b、基爾霍夫第二定律:在電路中任取一閉合回路,并規(guī)定正的繞行方向,其中電動勢的代數和,等于各部分電阻(在交流電路中為阻抗)與電流強度乘積的代數和。

例如,在圖8-2中,針對閉合回路① ,有

ε3 ? ε2 = I3 ( r3 + R2 + r2 ) ? I2R2 

基爾霍夫第二定律事實上是含源部分電路歐姆定律的變體(☆同學們可以列方程 UP = … = UP得到和上面完全相同的式子)。

3、Y?Δ變換

在難以看清串、并聯(lián)關系的電路中,進行“Y型?Δ型”的相互轉換常常是必要的。在圖8-3所示的電路中

☆同學們可以證明Δ→ Y的結論…

Rc = 

Rb = 

Ra = 

Y→Δ的變換稍稍復雜一些,但我們仍然可以得到

R1 = 

R2 = 

R3 = 

三、電功和電功率

1、電源

使其他形式的能量轉變?yōu)殡娔艿难b置。如發(fā)電機、電池等。發(fā)電機是將機械能轉變?yōu)殡娔;干電池、蓄電池是將化學能轉變?yōu)殡娔;光電池是將光能轉變?yōu)殡娔埽辉与姵厥菍⒃雍朔派淠苻D變?yōu)殡娔;在電子設備中,有時也把變換電能形式的裝置,如整流器等,作為電源看待。

電源電動勢定義為電源的開路電壓,內阻則定義為沒有電動勢時電路通過電源所遇到的電阻。據此不難推出相同電源串聯(lián)、并聯(lián),甚至不同電源串聯(lián)、并聯(lián)的時的電動勢和內阻的值。

例如,電動勢、內阻分別為ε1 、r1和ε2 、r2的電源并聯(lián),構成的新電源的電動勢ε和內阻r分別為(☆師生共同推導…)

ε = 

r = 

2、電功、電功率

電流通過電路時,電場力對電荷作的功叫做電功W。單位時間內電場力所作的功叫做電功率P 。

計算時,只有W = UIt和P = UI是完全沒有條件的,對于不含源的純電阻,電功和焦耳熱重合,電功率則和熱功率重合,有W = I2Rt = t和P = I2R = 。

對非純電阻電路,電功和電熱的關系依據能量守恒定律求解。 

四、物質的導電性

在不同的物質中,電荷定向移動形成電流的規(guī)律并不是完全相同的。

1、金屬中的電流

即通常所謂的不含源純電阻中的電流,規(guī)律遵從“外電路歐姆定律”。

2、液體導電

能夠導電的液體叫電解液(不包括液態(tài)金屬)。電解液中離解出的正負離子導電是液體導電的特點(如:硫酸銅分子在通常情況下是電中性的,但它在溶液里受水分子的作用就會離解成銅離子Cu2+和硫酸根離子S,它們在電場力的作用下定向移動形成電流)。

在電解液中加電場時,在兩個電極上(或電極旁)同時產生化學反應的過程叫作“電解”。電解的結果是在兩個極板上(或電極旁)生成新的物質。

液體導電遵從法拉第電解定律——

法拉第電解第一定律:電解時在電極上析出或溶解的物質的質量和電流強度、跟通電時間成正比。表達式:m = kIt = KQ (式中Q為析出質量為m的物質所需要的電量;K為電化當量,電化當量的數值隨著被析出的物質種類而不同,某種物質的電化當量在數值上等于通過1C電量時析出的該種物質的質量,其單位為kg/C。)

法拉第電解第二定律:物質的電化當量K和它的化學當量成正比。某種物質的化學當量是該物質的摩爾質量M(克原子量)和它的化合價n的比值,即 K =  ,而F為法拉第常數,對任何物質都相同,F = 9.65×104C/mol 。

將兩個定律聯(lián)立可得:m = Q 。

3、氣體導電

氣體導電是很不容易的,它的前提是氣體中必須出現可以定向移動的離子或電子。按照“載流子”出現方式的不同,可以把氣體放電分為兩大類——

a、被激放電

在地面放射性元素的輻照以及紫外線和宇宙射線等的作用下,會有少量氣體分子或原子被電離,或在有些燈管內,通電的燈絲也會發(fā)射電子,這些“載流子”均會在電場力作用下產生定向移動形成電流。這種情況下的電流一般比較微弱,且遵從歐姆定律。典型的被激放電情形有

b、自激放電

但是,當電場足夠強,電子動能足夠大,它們和中性氣體相碰撞時,可以使中性分子電離,即所謂碰撞電離。同時,在正離子向陰極運動時,由于以很大的速度撞到陰極上,還可能從陰極表面上打出電子來,這種現象稱為二次電子發(fā)射。碰撞電離和二次電子發(fā)射使氣體中在很短的時間內出現了大量的電子和正離子,電流亦迅速增大。這種現象被稱為自激放電。自激放電不遵從歐姆定律。

常見的自激放電有四大類:輝光放電、弧光放電、火花放電、電暈放電。

4、超導現象

據金屬電阻率和溫度的關系,電阻率會隨著溫度的降低和降低。當電阻率降為零時,稱為超導現象。電阻率為零時對應的溫度稱為臨界溫度。超導現象首先是荷蘭物理學家昂尼斯發(fā)現的。

超導的應用前景是顯而易見且相當廣闊的。但由于一般金屬的臨界溫度一般都非常低,故產業(yè)化的價值不大,為了解決這個矛盾,科學家們致力于尋找或合成臨界溫度比較切合實際的材料就成了當今前沿科技的一個熱門領域。當前人們的研究主要是集中在合成材料方面,臨界溫度已經超過100K,當然,這個溫度距產業(yè)化的期望值還很遠。

5、半導體

半導體的電阻率界于導體和絕緣體之間,且ρ

查看答案和解析>>

第Ⅰ卷(選擇題 共31分)

一、單項選擇題.本題共5小題,每小題3分,共計15分.每小題只有一個選項符合題意.

1. 關于科學家和他們的貢獻,下列說法中正確的是[來源:Www..com]

A.安培首先發(fā)現了電流的磁效應

B.伽利略認為自由落體運動是速度隨位移均勻變化的運動

C.牛頓發(fā)現了萬有引力定律,并計算出太陽與地球間引力的大小

D.法拉第提出了電場的觀點,說明處于電場中電荷所受到的力是電場給予的

2.如圖為一種主動式光控報警器原理圖,圖中R1R2為光敏電阻,R3R4為定值電阻.當射向光敏電阻R1R2的任何一束光線被遮擋時,都會引起警鈴發(fā)聲,則圖中虛線框內的電路是

A.與門                  B.或門               C.或非門                  D.與非門

 


3.如圖所示的交流電路中,理想變壓器原線圈輸入電壓為U1,輸入功率為P1,輸出功率為P2,各交流電表均為理想電表.當滑動變阻器R的滑動頭向下移動時

A.燈L變亮                                    B.各個電表讀數均變大

C.因為U1不變,所以P1不變                              D.P1變大,且始終有P1= P2

4.豎直平面內光滑圓軌道外側,一小球以某一水平速度v0A點出發(fā)沿圓軌道運動,至B點時脫離軌道,最終落在水平面上的C點,不計空氣阻力.下列說法中不正確的是

A.在B點時,小球對圓軌道的壓力為零

B.BC過程,小球做勻變速運動

C.在A點時,小球對圓軌道壓力大于其重力

D.AB過程,小球水平方向的加速度先增加后減小

5.如圖所示,水平面上放置質量為M的三角形斜劈,斜劈頂端安裝光滑的定滑輪,細繩跨過定滑輪分別連接質量為m1m2的物塊.m1在斜面上運動,三角形斜劈保持靜止狀態(tài).下列說法中正確的是

A.若m2向下運動,則斜劈受到水平面向左摩擦力

B.若m1沿斜面向下加速運動,則斜劈受到水平面向右的摩擦力

C.若m1沿斜面向下運動,則斜劈受到水平面的支持力大于(m1+ m2+Mg

D.若m2向上運動,則輕繩的拉力一定大于m2g

二、多項選擇題.本題共4小題,每小題4分,共計16分.每小題有多個選項符合題意.全部選對的得4分,選對但不全的得2分,錯選或不答的得0分.

6.木星是太陽系中最大的行星,它有眾多衛(wèi)星.觀察測出:木星繞太陽作圓周運動的半徑為r1 周期為T1;木星的某一衛(wèi)星繞木星作圓周運動的半徑為r2 周期為T2.已知萬有引力常量為G,則根據題中給定條件

A.能求出木星的質量

B.能求出木星與衛(wèi)星間的萬有引力

C.能求出太陽與木星間的萬有引力

D.可以斷定

7.如圖所示,xOy坐標平面在豎直面內,x軸沿水平方向,y軸正方向豎直向上,在圖示空間內有垂直于xOy平面的水平勻強磁場.一帶電小球從O點由靜止釋放,運動軌跡如圖中曲線.關于帶電小球的運動,下列說法中正確的是

A.OAB軌跡為半圓

B.小球運動至最低點A時速度最大,且沿水平方向

C.小球在整個運動過程中機械能守恒

D.小球在A點時受到的洛倫茲力與重力大小相等

8.如圖所示,質量為M、長為L的木板置于光滑的水平面上,一質量為m的滑塊放置在木板左端,滑塊與木板間滑動摩擦力大小為f,用水平的恒定拉力F作用于滑塊.當滑塊運動到木板右端時,木板在地面上移動的距離為s,滑塊速度為v1,木板速度為v2,下列結論中正確的是

A.上述過程中,F做功大小為            

B.其他條件不變的情況下,F越大,滑塊到達右端所用時間越長

C.其他條件不變的情況下,M越大,s越小

D.其他條件不變的情況下,f越大,滑塊與木板間產生的熱量越多

9.如圖所示,兩個固定的相同細環(huán)相距一定的距離,同軸放置,O1、O2分別為兩環(huán)的圓心,兩環(huán)分別帶有均勻分布的等量異種電荷.一帶正電的粒子從很遠處沿軸線飛來并穿過兩環(huán).則在帶電粒子運動過程中

A.在O1點粒子加速度方向向左

B.從O1O2過程粒子電勢能一直增加

C.軸線上O1點右側存在一點,粒子在該點動能最小

D.軸線上O1點右側、O2點左側都存在場強為零的點,它們關于O1、O2連線中點對稱

 


第Ⅱ卷(非選擇題 共89分)

三、簡答題:本題分必做題(第lO、11題)和選做題(第12題)兩部分,共計42分.請將解答填寫在答題卡相應的位置.

必做題

10.測定木塊與長木板之間的動摩擦因數時,采用如圖所示的裝置,圖中長木板水平固定.

(1)實驗過程中,電火花計時器應接在  ▲  (選填“直流”或“交流”)電源上.調整定滑輪高度,使  ▲ 

(2)已知重力加速度為g,測得木塊的質量為M,砝碼盤和砝碼的總質量為m,木塊的加速度為a,則木塊與長木板間動摩擦因數μ=  ▲ 

(3)如圖為木塊在水平木板上帶動紙帶運動打出的一條紙帶的一部分,0、1、2、3、4、5、6為計數點,相鄰兩計數點間還有4個打點未畫出.從紙帶上測出x1=3.20cm,x2=4.52cm,x5=8.42cm,x6=9.70cm.則木塊加速度大小a=  ▲  m/s2(保留兩位有效數字).

 


11.為了測量某電池的電動勢 E(約為3V)和內阻 r,可供選擇的器材如下:

A.電流表G1(2mA  100Ω)             B.電流表G2(1mA  內阻未知)

C.電阻箱R1(0~999.9Ω)                      D.電阻箱R2(0~9999Ω)

E.滑動變阻器R3(0~10Ω  1A)         F.滑動變阻器R4(0~1000Ω  10mA)

G.定值電阻R0(800Ω  0.1A)               H.待測電池

I.導線、電鍵若干

(1)采用如圖甲所示的電路,測定電流表G2的內阻,得到電流表G1的示數I1、電流表G2的示數I2如下表所示:

I1(mA)

0.40

0.81

1.20

1.59

2.00

I2(mA)

0.20

0.40

0.60

0.80

1.00

 


根據測量數據,請在圖乙坐標中描點作出I1I2圖線.由圖得到電流表G2的內阻等于

  ▲  Ω.

(2)在現有器材的條件下,測量該電池電動勢和內阻,采用如圖丙所示的電路,圖中滑動變阻器①應該選用給定的器材中  ▲  ,電阻箱②選  ▲  (均填寫器材代號).

(3)根據圖丙所示電路,請在丁圖中用筆畫線代替導線,完成實物電路的連接.

 


12.選做題(請從A、B和C三小題中選定兩小題作答,并在答題卡上把所選題目對應字母后的方框涂滿涂黑.如都作答,則按A、B兩小題評分.)

A.(選修模塊3-3)(12分)

(1)下列說法中正確的是  ▲ 

A.液體表面層分子間距離大于液體內部分子間距離,液體表面存在張力

B.擴散運動就是布朗運動

C.蔗糖受潮后會粘在一起,沒有確定的幾何形狀,它是非晶體

D.對任何一類與熱現象有關的宏觀自然過程進行方向的說明,都可以作為熱力學第二定律的表述

(2)將1ml的純油酸加到500ml的酒精中,待均勻溶解后,用滴管取1ml油酸酒精溶液,讓其自然滴出,共200滴.現在讓其中一滴落到盛水的淺盤內,待油膜充分展開后,測得油膜的面積為200cm2,則估算油酸分子的大小是  ▲  m(保留一位有效數字).

(3)如圖所示,一直立的汽缸用一質量為m的活塞封閉一定量的理想氣體,活塞橫截面積為S,汽缸內壁光滑且缸壁是導熱的,開始活塞被固定,打開固定螺栓K,活塞下落,經過足夠長時間后,活塞停在B點,已知AB=h,大氣壓強為p0,重力加速度為g

①求活塞停在B點時缸內封閉氣體的壓強;

②設周圍環(huán)境溫度保持不變,求整個過程中通過缸壁傳遞的熱量Q(一定量理想氣體的內能僅由溫度決定).

B.(選修模塊3-4)(12分)

(1)下列說法中正確的是  ▲ 

A.照相機、攝影機鏡頭表面涂有增透膜,利用了光的干涉原理

B.光照射遮擋物形成的影輪廓模糊,是光的衍射現象

C.太陽光是偏振光

D.為了有效地發(fā)射電磁波,應該采用長波發(fā)射

(2)甲、乙兩人站在地面上時身高都是L0, 甲、乙分別乘坐速度為0.6c和0.8cc為光速)的飛船同向運動,如圖所示.此時乙觀察到甲的身高L  ▲  L0;若甲向乙揮手,動作時間為t0,乙觀察到甲動作時間為t1,則t1  ▲  t0(均選填“>”、“ =” 或“<”).

(3)x=0的質點在t=0時刻開始振動,產生的波沿x軸正方向傳播,t1=0.14s時刻波的圖象如圖所示,質點A剛好開始振動.

①求波在介質中的傳播速度;

②求x=4m的質點在0.14s內運動的路程.

   C.(選修模塊3-5)(12分)

(1)下列說法中正確的是  ▲ 

A.康普頓效應進一步證實了光的波動特性

B.為了解釋黑體輻射規(guī)律,普朗克提出電磁輻射的能量是量子化的

C.經典物理學不能解釋原子的穩(wěn)定性和原子光譜的分立特征

D.天然放射性元素衰變的快慢與化學、物理狀態(tài)有關

(2)是不穩(wěn)定的,能自發(fā)的發(fā)生衰變.

①完成衰變反應方程    ▲ 

衰變?yōu)?img width=40 height=25 src="http://thumb.zyjl.cn/pic1/1899/wl/3/40403.gif" >,經過  ▲  α衰變,  ▲  β衰變.

(3)1919年,盧瑟福用α粒子轟擊氮核發(fā)現質子.科學研究表明其核反應過程是:α粒子轟擊靜止的氮核后形成了不穩(wěn)定的復核,復核發(fā)生衰變放出質子,變成氧核.設α粒子質量為m1,初速度為v0,氮核質量為m2,質子質量為m0, 氧核的質量為m3,不考慮相對論效應.

α粒子轟擊氮核形成不穩(wěn)定復核的瞬間,復核的速度為多大?

②求此過程中釋放的核能.

四、計算題:本題共3小題,共計47分.解答時請寫出必要的文字說明、方程式和重要的演算步驟,只寫出最后答案的不能得分,有數值計算的題,答案中必須明確寫出數值和單位.

13.如圖所示,一質量為m的氫氣球用細繩拴在地面上,地面上空風速水平且恒為v0,球靜止時繩與水平方向夾角為α.某時刻繩突然斷裂,氫氣球飛走.已知氫氣球在空氣中運動時所受到的阻力f正比于其相對空氣的速度v,可以表示為f=kvk為已知的常數).則

(1)氫氣球受到的浮力為多大?

(2)繩斷裂瞬間,氫氣球加速度為多大?

(3)一段時間后氫氣球在空中做勻速直線運動,其水平方向上的速度與風速v0相等,求此時氣球速度大。ㄔO空氣密度不發(fā)生變化,重力加速度為g).

 


14.如圖所示,光滑絕緣水平面上放置一均勻導體制成的正方形線框abcd,線框質量為m,電阻為R,邊長為L.有一方向豎直向下的有界磁場,磁場的磁感應強度為B,磁場區(qū)寬度大于L,左邊界與ab邊平行.線框在水平向右的拉力作用下垂直于邊界線穿過磁場區(qū).

(1)若線框以速度v勻速穿過磁場區(qū),求線框在離開磁場時ab兩點間的電勢差;

(2)若線框從靜止開始以恒定的加速度a運動,經過t1時間ab邊開始進入磁場,求cd邊將要進入磁場時刻回路的電功率;

(3)若線框以初速度v0進入磁場,且拉力的功率恒為P0.經過時間Tcd邊進入磁場,此過程中回路產生的電熱為Q.后來ab邊剛穿出磁場時,線框速度也為v0,求線框穿過磁場所用的時間t

      

15.如圖所示,有界勻強磁場的磁感應強度為B,方向垂直紙面向里,MN為其左邊界,磁場中放置一半徑為R的圓柱形金屬圓筒,圓心OMN的距離OO1=2R,圓筒軸線與磁場平行.圓筒用導線通過一個電阻r0接地,最初金屬圓筒不帶電.現有范圍足夠大的平行電子束以速度v0從很遠處沿垂直于左邊界MN向右射入磁場區(qū),已知電子質量為m,電量為e

(1)若電子初速度滿足,則在最初圓筒上沒有帶電時,能夠打到圓筒上的電子對應MN邊界上O1兩側的范圍是多大?

(2)當圓筒上電量達到相對穩(wěn)定時,測量得到通過電阻r0的電流恒為I,忽略運動電子間的相互作用,求此時金屬圓筒的電勢φ和電子到達圓筒時速度v(取無窮遠處或大地電勢為零).

(3)在(2)的情況下,求金屬圓筒的發(fā)熱功率.

 


查看答案和解析>>

第七部分 熱學

熱學知識在奧賽中的要求不以深度見長,但知識點卻非常地多(考綱中羅列的知識點幾乎和整個力學——前五部分——的知識點數目相等)。而且,由于高考要求對熱學的要求逐年降低(本屆尤其低得“離譜”,連理想氣體狀態(tài)方程都沒有了),這就客觀上給奧賽培訓增加了負擔。因此,本部分只能采新授課的培訓模式,將知識點和例題講解及時地結合,爭取讓學員學一點,就領會一點、鞏固一點,然后再層疊式地往前推進。

一、分子動理論

1、物質是由大量分子組成的(注意分子體積和分子所占據空間的區(qū)別)

對于分子(單原子分子)間距的計算,氣體和液體可直接用,對固體,則與分子的空間排列(晶體的點陣)有關。

【例題1】如圖6-1所示,食鹽(NaCl)的晶體是由鈉離子(圖中的白色圓點表示)和氯離子(圖中的黑色圓點表示)組成的,離子鍵兩兩垂直且鍵長相等。已知食鹽的摩爾質量為58.5×10-3kg/mol,密度為2.2×103kg/m3,阿伏加德羅常數為6.0×1023mol-1,求食鹽晶體中兩個距離最近的鈉離子中心之間的距離。

【解說】題意所求即圖中任意一個小立方塊的變長(設為a)的倍,所以求a成為本題的焦點。

由于一摩爾的氯化鈉含有NA個氯化鈉分子,事實上也含有2NA個鈉離子(或氯離子),所以每個鈉離子占據空間為 v = 

而由圖不難看出,一個離子占據的空間就是小立方體的體積a3 ,

即 a3 =  = ,最后,鄰近鈉離子之間的距離l = a

【答案】3.97×10-10m 。

〖思考〗本題還有沒有其它思路?

〖答案〗每個離子都被八個小立方體均分,故一個小立方體含有×8個離子 = 分子,所以…(此法普遍適用于空間點陣比較復雜的晶體結構。)

2、物質內的分子永不停息地作無規(guī)則運動

固體分子在平衡位置附近做微小振動(振幅數量級為0.1),少數可以脫離平衡位置運動。液體分子的運動則可以用“長時間的定居(振動)和短時間的遷移”來概括,這是由于液體分子間距較固體大的結果。氣體分子基本“居無定所”,不停地遷移(常溫下,速率數量級為102m/s)。

無論是振動還是遷移,都具備兩個特點:a、偶然無序(雜亂無章)和統(tǒng)計有序(分子數比率和速率對應一定的規(guī)律——如麥克斯韋速率分布函數,如圖6-2所示);b、劇烈程度和溫度相關。

氣體分子的三種速率。最可幾速率vP :f(v) = (其中ΔN表示v到v +Δv內分子數,N表示分子總數)極大時的速率,vP == ;平均速率:所有分子速率的算術平均值, ==;方均根速率:與分子平均動能密切相關的一個速率,==〔其中R為普適氣體恒量,R = 8.31J/(mol.K)。k為玻耳茲曼常量,k =  = 1.38×10-23J/K 〕

【例題2】證明理想氣體的壓強P = n,其中n為分子數密度,為氣體分子平均動能。

【證明】氣體的壓強即單位面積容器壁所承受的分子的撞擊力,這里可以設理想氣體被封閉在一個邊長為a的立方體容器中,如圖6-3所示。

考查yoz平面的一個容器壁,P =            ①

設想在Δt時間內,有Nx個分子(設質量為m)沿x方向以恒定的速率vx碰撞該容器壁,且碰后原速率彈回,則根據動量定理,容器壁承受的壓力

 F ==                            ②

在氣體的實際狀況中,如何尋求Nx和vx呢?

考查某一個分子的運動,設它的速度為v ,它沿x、y、z三個方向分解后,滿足

v2 =  +  + 

分子運動雖然是雜亂無章的,但仍具有“偶然無序和統(tǒng)計有序”的規(guī)律,即

 =  +  +  = 3                    ③

這就解決了vx的問題。另外,從速度的分解不難理解,每一個分子都有機會均等的碰撞3個容器壁的可能。設Δt = ,則

 Nx = ·3N = na3                         ④

注意,這里的是指有6個容器壁需要碰撞,而它們被碰的幾率是均等的。

結合①②③④式不難證明題設結論。

〖思考〗此題有沒有更簡便的處理方法?

〖答案〗有!懊睢彼蟹肿右韵嗤乃俾蕍沿+x、?x、+y、?y、+z、?z這6個方向運動(這樣造成的宏觀效果和“雜亂無章”地運動時是一樣的),則 Nx =N = na3 ;而且vx = v

所以,P =  = ==nm = n

3、分子間存在相互作用力(注意分子斥力和氣體分子碰撞作用力的區(qū)別),而且引力和斥力同時存在,宏觀上感受到的是其合效果。

分子力是保守力,分子間距改變時,分子力做的功可以用分子勢能的變化表示,分子勢能EP隨分子間距的變化關系如圖6-4所示。

分子勢能和動能的總和稱為物體的內能。

二、熱現象和基本熱力學定律

1、平衡態(tài)、狀態(tài)參量

a、凡是與溫度有關的現象均稱為熱現象,熱學是研究熱現象的科學。熱學研究的對象都是有大量分子組成的宏觀物體,通稱為熱力學系統(tǒng)(簡稱系統(tǒng))。當系統(tǒng)的宏觀性質不再隨時間變化時,這樣的狀態(tài)稱為平衡態(tài)。

b、系統(tǒng)處于平衡態(tài)時,所有宏觀量都具有確定的值,這些確定的值稱為狀態(tài)參量(描述氣體的狀態(tài)參量就是P、V和T)。

c、熱力學第零定律(溫度存在定律):若兩個熱力學系統(tǒng)中的任何一個系統(tǒng)都和第三個熱力學系統(tǒng)處于熱平衡狀態(tài),那么,這兩個熱力學系統(tǒng)也必定處于熱平衡。這個定律反映出:處在同一熱平衡狀態(tài)的所有的熱力學系統(tǒng)都具有一個共同的宏觀特征,這一特征是由這些互為熱平衡系統(tǒng)的狀態(tài)所決定的一個數值相等的狀態(tài)函數,這個狀態(tài)函數被定義為溫度。

2、溫度

a、溫度即物體的冷熱程度,溫度的數值表示法稱為溫標。典型的溫標有攝氏溫標t、華氏溫標F(F = t + 32)和熱力學溫標T(T = t + 273.15)。

b、(理想)氣體溫度的微觀解釋: = kT (i為分子的自由度 = 平動自由度t + 轉動自由度r + 振動自由度s 。對單原子分子i = 3 ,“剛性”〈忽略振動,s = 0,但r = 2〉雙原子分子i = 5 。對于三個或三個以上的多原子分子,i = 6 。能量按自由度是均分的),所以說溫度是物質分子平均動能的標志。

c、熱力學第三定律:熱力學零度不可能達到。(結合分子動理論的觀點2和溫度的微觀解釋很好理解。)

3、熱力學過程

a、熱傳遞。熱傳遞有三種方式:傳導(對長L、橫截面積S的柱體,Q = K

查看答案和解析>>

第一部分  力&物體的平衡

第一講 力的處理

一、矢量的運算

1、加法

表達: +  =  。

名詞:為“和矢量”。

法則:平行四邊形法則。如圖1所示。

和矢量大。篶 =  ,其中α為的夾角。

和矢量方向:之間,和夾角β= arcsin

2、減法

表達: =  

名詞:為“被減數矢量”,為“減數矢量”,為“差矢量”。

法則:三角形法則。如圖2所示。將被減數矢量和減數矢量的起始端平移到一點,然后連接兩時量末端,指向被減數時量的時量,即是差矢量。

差矢量大。篴 =  ,其中θ為的夾角。

差矢量的方向可以用正弦定理求得。

一條直線上的矢量運算是平行四邊形和三角形法則的特例。

例題:已知質點做勻速率圓周運動,半徑為R ,周期為T ,求它在T內和在T內的平均加速度大小。

解說:如圖3所示,A到B點對應T的過程,A到C點對應T的過程。這三點的速度矢量分別設為、

根據加速度的定義 得:,

由于有兩處涉及矢量減法,設兩個差矢量  , ,根據三角形法則,它們在圖3中的大小、方向已繪出(的“三角形”已被拉伸成一條直線)。

本題只關心各矢量的大小,顯然:

 =  =  =  ,且: =  , = 2

所以: =  =   =  =  。

(學生活動)觀察與思考:這兩個加速度是否相等,勻速率圓周運動是不是勻變速運動?

答:否;不是。

3、乘法

矢量的乘法有兩種:叉乘和點乘,和代數的乘法有著質的不同。

⑴ 叉乘

表達:× = 

名詞:稱“矢量的叉積”,它是一個新的矢量。

叉積的大。篶 = absinα,其中α為的夾角。意義:的大小對應由作成的平行四邊形的面積。

叉積的方向:垂直確定的平面,并由右手螺旋定則確定方向,如圖4所示。

顯然,××,但有:×= -×

⑵ 點乘

表達:· = c

名詞:c稱“矢量的點積”,它不再是一個矢量,而是一個標量。

點積的大。篶 = abcosα,其中α為的夾角。

二、共點力的合成

1、平行四邊形法則與矢量表達式

2、一般平行四邊形的合力與分力的求法

余弦定理(或分割成RtΔ)解合力的大小

正弦定理解方向

三、力的分解

1、按效果分解

2、按需要——正交分解

第二講 物體的平衡

一、共點力平衡

1、特征:質心無加速度。

2、條件:Σ = 0 ,或  = 0 , = 0

例題:如圖5所示,長為L 、粗細不均勻的橫桿被兩根輕繩水平懸掛,繩子與水平方向的夾角在圖上已標示,求橫桿的重心位置。

解說:直接用三力共點的知識解題,幾何關系比較簡單。

答案:距棒的左端L/4處。

(學生活動)思考:放在斜面上的均質長方體,按實際情況分析受力,斜面的支持力會通過長方體的重心嗎?

解:將各處的支持力歸納成一個N ,則長方體受三個力(G 、f 、N)必共點,由此推知,N不可能通過長方體的重心。正確受力情形如圖6所示(通常的受力圖是將受力物體看成一個點,這時,N就過重心了)。

答:不會。

二、轉動平衡

1、特征:物體無轉動加速度。

2、條件:Σ= 0 ,或ΣM+ =ΣM- 

如果物體靜止,肯定會同時滿足兩種平衡,因此用兩種思路均可解題。

3、非共點力的合成

大小和方向:遵從一條直線矢量合成法則。

作用點:先假定一個等效作用點,然后讓所有的平行力對這個作用點的和力矩為零。

第三講 習題課

1、如圖7所示,在固定的、傾角為α斜面上,有一塊可以轉動的夾板(β不定),夾板和斜面夾著一個質量為m的光滑均質球體,試求:β取何值時,夾板對球的彈力最小。

解說:法一,平行四邊形動態(tài)處理。

對球體進行受力分析,然后對平行四邊形中的矢量G和N1進行平移,使它們構成一個三角形,如圖8的左圖和中圖所示。

由于G的大小和方向均不變,而N1的方向不可變,當β增大導致N2的方向改變時,N2的變化和N1的方向變化如圖8的右圖所示。

顯然,隨著β增大,N1單調減小,而N2的大小先減小后增大,當N2垂直N1時,N2取極小值,且N2min = Gsinα。

法二,函數法。

看圖8的中間圖,對這個三角形用正弦定理,有:

 =  ,即:N2 =  ,β在0到180°之間取值,N2的極值討論是很容易的。

答案:當β= 90°時,甲板的彈力最小。

2、把一個重為G的物體用一個水平推力F壓在豎直的足夠高的墻壁上,F隨時間t的變化規(guī)律如圖9所示,則在t = 0開始物體所受的摩擦力f的變化圖線是圖10中的哪一個?

解說:靜力學旨在解決靜態(tài)問題和準靜態(tài)過程的問題,但本題是一個例外。物體在豎直方向的運動先加速后減速,平衡方程不再適用。如何避開牛頓第二定律,是本題授課時的難點。

靜力學的知識,本題在于區(qū)分兩種摩擦的不同判據。

水平方向合力為零,得:支持力N持續(xù)增大。

物體在運動時,滑動摩擦力f = μN ,必持續(xù)增大。但物體在靜止后靜摩擦力f′≡ G ,與N沒有關系。

對運動過程加以分析,物體必有加速和減速兩個過程。據物理常識,加速時,f < G ,而在減速時f > G 。

答案:B 。

3、如圖11所示,一個重量為G的小球套在豎直放置的、半徑為R的光滑大環(huán)上,另一輕質彈簧的勁度系數為k ,自由長度為L(L<2R),一端固定在大圓環(huán)的頂點A ,另一端與小球相連。環(huán)靜止平衡時位于大環(huán)上的B點。試求彈簧與豎直方向的夾角θ。

解說:平行四邊形的三個矢量總是可以平移到一個三角形中去討論,解三角形的典型思路有三種:①分割成直角三角形(或本來就是直角三角形);②利用正、余弦定理;③利用力學矢量三角形和某空間位置三角形相似。本題旨在貫徹第三種思路。

分析小球受力→矢量平移,如圖12所示,其中F表示彈簧彈力,N表示大環(huán)的支持力。

(學生活動)思考:支持力N可不可以沿圖12中的反方向?(正交分解看水平方向平衡——不可以。)

容易判斷,圖中的灰色矢量三角形和空間位置三角形ΔAOB是相似的,所以:

                                   ⑴

由胡克定律:F = k(- R)                ⑵

幾何關系:= 2Rcosθ                     ⑶

解以上三式即可。

答案:arccos 。

(學生活動)思考:若將彈簧換成勁度系數k′較大的彈簧,其它條件不變,則彈簧彈力怎么變?環(huán)的支持力怎么變?

答:變。徊蛔。

(學生活動)反饋練習:光滑半球固定在水平面上,球心O的正上方有一定滑輪,一根輕繩跨過滑輪將一小球從圖13所示的A位置開始緩慢拉至B位置。試判斷:在此過程中,繩子的拉力T和球面支持力N怎樣變化?

解:和上題完全相同。

答:T變小,N不變。

4、如圖14所示,一個半徑為R的非均質圓球,其重心不在球心O點,先將它置于水平地面上,平衡時球面上的A點和地面接觸;再將它置于傾角為30°的粗糙斜面上,平衡時球面上的B點與斜面接觸,已知A到B的圓心角也為30°。試求球體的重心C到球心O的距離。

解說:練習三力共點的應用。

根據在平面上的平衡,可知重心C在OA連線上。根據在斜面上的平衡,支持力、重力和靜摩擦力共點,可以畫出重心的具體位置。幾何計算比較簡單。

答案:R 。

(學生活動)反饋練習:靜摩擦足夠,將長為a 、厚為b的磚塊碼在傾角為θ的斜面上,最多能碼多少塊?

解:三力共點知識應用。

答: 。

4、兩根等長的細線,一端拴在同一懸點O上,另一端各系一個小球,兩球的質量分別為m1和m2 ,已知兩球間存在大小相等、方向相反的斥力而使兩線張開一定角度,分別為45和30°,如圖15所示。則m1 : m2??為多少?

解說:本題考查正弦定理、或力矩平衡解靜力學問題。

對兩球進行受力分析,并進行矢量平移,如圖16所示。

首先注意,圖16中的灰色三角形是等腰三角形,兩底角相等,設為α。

而且,兩球相互作用的斥力方向相反,大小相等,可用同一字母表示,設為F 。

對左邊的矢量三角形用正弦定理,有:

 =          ①

同理,對右邊的矢量三角形,有: =                                ②

解①②兩式即可。

答案:1 : 。

(學生活動)思考:解本題是否還有其它的方法?

答:有——將模型看成用輕桿連成的兩小球,而將O點看成轉軸,兩球的重力對O的力矩必然是平衡的。這種方法更直接、簡便。

應用:若原題中繩長不等,而是l1 :l2 = 3 :2 ,其它條件不變,m1與m2的比值又將是多少?

解:此時用共點力平衡更加復雜(多一個正弦定理方程),而用力矩平衡則幾乎和“思考”完全相同。

答:2 :3 。

5、如圖17所示,一個半徑為R的均質金屬球上固定著一根長為L的輕質細桿,細桿的左端用鉸鏈與墻壁相連,球下邊墊上一塊木板后,細桿恰好水平,而木板下面是光滑的水平面。由于金屬球和木板之間有摩擦(已知摩擦因素為μ),所以要將木板從球下面向右抽出時,至少需要大小為F的水平拉力。試問:現要將木板繼續(xù)向左插進一些,至少需要多大的水平推力?

解說:這是一個典型的力矩平衡的例題。

以球和桿為對象,研究其對轉軸O的轉動平衡,設木板拉出時給球體的摩擦力為f ,支持力為N ,重力為G ,力矩平衡方程為:

f R + N(R + L)= G(R + L)           

球和板已相對滑動,故:f = μN        ②

解①②可得:f = 

再看木板的平衡,F = f 。

同理,木板插進去時,球體和木板之間的摩擦f′=  = F′。

答案: 

第四講 摩擦角及其它

一、摩擦角

1、全反力:接觸面給物體的摩擦力與支持力的合力稱全反力,一般用R表示,亦稱接觸反力。

2、摩擦角:全反力與支持力的最大夾角稱摩擦角,一般用φm表示。

此時,要么物體已經滑動,必有:φm = arctgμ(μ為動摩擦因素),稱動摩擦力角;要么物體達到最大運動趨勢,必有:φms = arctgμs(μs為靜摩擦因素),稱靜摩擦角。通常處理為φm = φms 

3、引入全反力和摩擦角的意義:使分析處理物體受力時更方便、更簡捷。

二、隔離法與整體法

1、隔離法:當物體對象有兩個或兩個以上時,有必要各個擊破,逐個講每個個體隔離開來分析處理,稱隔離法。

在處理各隔離方程之間的聯(lián)系時,應注意相互作用力的大小和方向關系。

2、整體法:當各個體均處于平衡狀態(tài)時,我們可以不顧個體的差異而講多個對象看成一個整體進行分析處理,稱整體法。

應用整體法時應注意“系統(tǒng)”、“內力”和“外力”的涵義。

三、應用

1、物體放在水平面上,用與水平方向成30°的力拉物體時,物體勻速前進。若此力大小不變,改為沿水平方向拉物體,物體仍能勻速前進,求物體與水平面之間的動摩擦因素μ。

解說:這是一個能顯示摩擦角解題優(yōu)越性的題目?梢酝ㄟ^不同解法的比較讓學生留下深刻印象。

法一,正交分解。(學生分析受力→列方程→得結果。)

法二,用摩擦角解題。

引進全反力R ,對物體兩個平衡狀態(tài)進行受力分析,再進行矢量平移,得到圖18中的左圖和中間圖(注意:重力G是不變的,而全反力R的方向不變、F的大小不變),φm指摩擦角。

再將兩圖重疊成圖18的右圖。由于灰色的三角形是一個頂角為30°的等腰三角形,其頂角的角平分線必垂直底邊……故有:φm = 15°。

最后,μ= tgφm 。

答案:0.268 。

(學生活動)思考:如果F的大小是可以選擇的,那么能維持物體勻速前進的最小F值是多少?

解:見圖18,右圖中虛線的長度即Fmin ,所以,Fmin = Gsinφm 。

答:Gsin15°(其中G為物體的重量)。

2、如圖19所示,質量m = 5kg的物體置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物體,使物體能夠沿斜面向上勻速運動,而斜面體始終靜止。已知斜面的質量M = 10kg ,傾角為30°,重力加速度g = 10m/s2 ,求地面對斜面體的摩擦力大小。

解說:

本題旨在顯示整體法的解題的優(yōu)越性。

法一,隔離法。簡要介紹……

法二,整體法。注意,滑塊和斜面隨有相對運動,但從平衡的角度看,它們是完全等價的,可以看成一個整體。

做整體的受力分析時,內力不加考慮。受力分析比較簡單,列水平方向平衡方程很容易解地面摩擦力。

答案:26.0N 。

(學生活動)地面給斜面體的支持力是多少?

解:略。

答:135N 。

應用:如圖20所示,一上表面粗糙的斜面體上放在光滑的水平地面上,斜面的傾角為θ。另一質量為m的滑塊恰好能沿斜面勻速下滑。若用一推力F作用在滑塊上,使之能沿斜面勻速上滑,且要求斜面體靜止不動,就必須施加一個大小為P = 4mgsinθcosθ的水平推力作用于斜面體。使?jié)M足題意的這個F的大小和方向。

解說:這是一道難度較大的靜力學題,可以動用一切可能的工具解題。

法一:隔離法。

由第一個物理情景易得,斜面于滑塊的摩擦因素μ= tgθ

對第二個物理情景,分別隔離滑塊和斜面體分析受力,并將F沿斜面、垂直斜面分解成Fx和Fy ,滑塊與斜面之間的兩對相互作用力只用兩個字母表示(N表示正壓力和彈力,f表示摩擦力),如圖21所示。

對滑塊,我們可以考查沿斜面方向和垂直斜面方向的平衡——

Fx = f + mgsinθ

Fy + mgcosθ= N

且 f = μN = Ntgθ

綜合以上三式得到:

Fx = Fytgθ+ 2mgsinθ               ①

對斜面體,只看水平方向平衡就行了——

P = fcosθ+ Nsinθ

即:4mgsinθcosθ=μNcosθ+ Nsinθ

代入μ值,化簡得:Fy = mgcosθ      ②

②代入①可得:Fx = 3mgsinθ

最后由F =解F的大小,由tgα= 解F的方向(設α為F和斜面的夾角)。

答案:大小為F = mg,方向和斜面夾角α= arctg()指向斜面內部。

法二:引入摩擦角和整體法觀念。

仍然沿用“法一”中關于F的方向設置(見圖21中的α角)。

先看整體的水平方向平衡,有:Fcos(θ- α) = P                                   ⑴

再隔離滑塊,分析受力時引進全反力R和摩擦角φ,由于簡化后只有三個力(R、mg和F),可以將矢量平移后構成一個三角形,如圖22所示。

在圖22右邊的矢量三角形中,有: =      ⑵

注意:φ= arctgμ= arctg(tgθ) = θ                                              ⑶

解⑴⑵⑶式可得F和α的值。

查看答案和解析>>


同步練習冊答案