28.長期露置在空氣中的銅器表面有一層綠色固體.小強帶著濃厚的興趣對闂傚倷鑳堕崑銊╁磿婵犳碍鍤堢憸鐗堝笒閻掑灚銇勯幒鎴敾閻庢熬鎷�查看更多

 

題目列表(包括答案和解析)

(2013•天津)如圖,是一對變量滿足的函數(shù)關(guān)系的圖象,有下列3個不同的問題情境:
①小明騎車以400米/分的速度勻速騎了5分,在原地休息了4分,然后以500米/分的速度勻速騎回出發(fā)地,設時間為x分,離出發(fā)地的距離為y千米;
②有一個容積為6升的開口空桶,小亮以1.2升/分的速度勻速向這個空桶注水,注5分后停止,等4分后,再以2升/分的速度勻速倒空桶中的水,設時間為x分,桶內(nèi)的水量為y升;
③矩形ABCD中,AB=4,BC=3,動點P從點A出發(fā),依次沿對角線AC、邊CD、邊DA運動至點A停止,設點P的運動路程為x,當點P與點A不重合時,y=S△ABP;當點P與點A重合時,y=0.
其中,符合圖中所示函數(shù)關(guān)系的問題情境的個數(shù)為( �。�

查看答案和解析>>

9、作圖題(作圖2分,其于每空2分,共12分)
按要求畫圖,并填空:
(1)畫∠AOB=60°;
(2)以O為頂點,OA為一邊,畫AOC=60,并使OC與OB在OA的兩側(cè),則OA是∠COB的
平分線
;
(3)分別在OB、OC上取點M、N,并使OM=ON=2cm,量得點M、N間的距離是
3.4
cm(精確到0.1cm);
(4)若線段MN與OA的交點是P,量得MP=
1.7
cm,NP=
1.7
cm,故點P是線段MN的
點.

查看答案和解析>>

(本題14分)如圖,在平面直角坐標系中.四邊形OABC是平行四邊形.直線經(jīng)過O、C兩點.點A的坐標為(8,o),點B的坐標為(11.4),動點P在線段OA上從點O出發(fā)以每秒1個單位的速度向點A運動,同時動點Q從點A出發(fā)以每秒2個單位的速度沿A→B→C的方向向點C運動,過點P作PM垂直于x軸,與折線O一C—B相交于點M。當P、Q兩點中有一點到達終點時,另一點也隨之停止運動,設點P、Q運動的時間為t秒().△MPQ的面積為S.

(1)點C的坐標為___________,直線的解析式為___________.(每空l分,共2分)

(2)試求點Q與點M相遇前S與t的函數(shù)關(guān)系式,并寫出相應的t的取值范圍。

(3)試求題(2)中當t為何值時,S的值最大,并求出S的最大值。

(4)隨著P、Q兩點的運動,當點M在線段CB上運動時,設PM的延長線與直線相交于點N。試探究:當t為何值時,△QMN為等腰三角形?請直接寫出t的值.

 

查看答案和解析>>

(本題14分)如圖,在平面直角坐標系中.四邊形OABC是平行四邊形.直線經(jīng)過O、C兩點.點A的坐標為(8,o),點B的坐標為(11.4),動點P在線段OA上從點O出發(fā)以每秒1個單位的速度向點A運動,同時動點Q從點A出發(fā)以每秒2個單位的速度沿A→B→C的方向向點C運動,過點P作PM垂直于x軸,與折線O一C—B相交于點M。當P、Q兩點中有一點到達終點時,另一點也隨之停止運動,設點P、Q運動的時間為t秒().△MPQ的面積為S.

(1)點C的坐標為___________,直線的解析式為___________.(每空l分,共2分)

(2)試求點Q與點M相遇前S與t的函數(shù)關(guān)系式,并寫出相應的t的取值范圍。

(3)試求題(2)中當t為何值時,S的值最大,并求出S的最大值。

(4)隨著P、Q兩點的運動,當點M在線段CB上運動時,設PM的延長線與直線相交于點N。試探究:當t為何值時,△QMN為等腰三角形?請直接寫出t的值.

 

查看答案和解析>>

(本題14分)如圖,在平面直角坐標系中.四邊形OABC是平行四邊形.直線經(jīng)過O、C兩點.點A的坐標為(8,o),點B的坐標為(11.4),動點P在線段OA上從點O出發(fā)以每秒1個單位的速度向點A運動,同時動點Q從點A出發(fā)以每秒2個單位的速度沿A→B→C的方向向點C運動,過點P作PM垂直于x軸,與折線O一C—B相交于點M。當P、Q兩點中有一點到達終點時,另一點也隨之停止運動,設點P、Q運動的時間為t秒().△MPQ的面積為S.
(1)點C的坐標為___________,直線的解析式為___________.(每空l分,共2分)
(2)試求點Q與點M相遇前S與t的函數(shù)關(guān)系式,并寫出相應的t的取值范圍。
(3)試求題(2)中當t為何值時,S的值最大,并求出S的最大值。
(4)隨著P、Q兩點的運動,當點M在線段CB上運動時,設PM的延長線與直線相交于點N。試探究:當t為何值時,△QMN為等腰三角形?請直接寫出t的值.

查看答案和解析>>


同步練習冊答案