19.(1)由題意可知.不論P(yáng)點(diǎn)在棱CC1上的任何位置.AP在底面ABCD內(nèi)射影為AC. ∵BD⊥AC.BD⊥CC1.∴BD⊥AP. (2)延長(zhǎng)B1P和BC.設(shè)B1P∩BC=M.連結(jié)AM.則AM=平面AB1P∩平面ABCD. 過(guò)B作BQ⊥AM于Q.連結(jié)B1Q.由于BQ是B1Q在底面ABCD內(nèi)的射影. 所以B1Q⊥AM.故∠B1QB就是所求二面角的平面角.依題意.知CM=2BC. 從而B(niǎo)M=3BC.所以. 在Rt△ABM中..在Rt△B1BQ中. 得為所求. (3)設(shè)CP=a.BC=m.則BB1=2m.C1P=2m-a.從而 在△PAB1中..依題意.得∠PAC=∠PAB1. ∴ 即 ∴ 故P距C的距離是側(cè)棱的 另解:如圖.建立空間直角坐標(biāo)系. 設(shè)CP=a.CC1=6.∴B1. CP(-3.3.a). 依題意.得 即故P距C點(diǎn)的距離是側(cè)棱的. 查看更多

 

題目列表(包括答案和解析)

設(shè)橢圓 )的一個(gè)頂點(diǎn)為,分別是橢圓的左、右焦點(diǎn),離心率 ,過(guò)橢圓右焦點(diǎn) 的直線(xiàn)  與橢圓 交于 , 兩點(diǎn).

(1)求橢圓的方程;

(2)是否存在直線(xiàn) ,使得 ,若存在,求出直線(xiàn)  的方程;若不存在,說(shuō)明理由;

【解析】本試題主要考查了橢圓的方程的求解,以及直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到,然后求解得到橢圓方程(2)中,對(duì)直線(xiàn)分為兩種情況討論,當(dāng)直線(xiàn)斜率存在時(shí),當(dāng)直線(xiàn)斜率不存在時(shí),聯(lián)立方程組,結(jié)合得到結(jié)論。

解:(1)橢圓的頂點(diǎn)為,即

,解得橢圓的標(biāo)準(zhǔn)方程為 --------4分

(2)由題可知,直線(xiàn)與橢圓必相交.

①當(dāng)直線(xiàn)斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意.                    --------5分

②當(dāng)直線(xiàn)斜率存在時(shí),設(shè)存在直線(xiàn),且.

,       ----------7分

,               

   = 

所以,                               ----------10分

故直線(xiàn)的方程為 

 

查看答案和解析>>

已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓C;其長(zhǎng)軸長(zhǎng)等于4,離心率為

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn)(0,1), 問(wèn)是否存在直線(xiàn)與橢圓交于兩點(diǎn),且?若存在,求出的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

【解析】本試題主要考查了橢圓的方程的求解,直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。

第一問(wèn)中,可設(shè)橢圓的標(biāo)準(zhǔn)方程為 

則由長(zhǎng)軸長(zhǎng)等于4,即2a=4,所以a=2.又,所以,

又由于 

所求橢圓C的標(biāo)準(zhǔn)方程為

第二問(wèn)中,

假設(shè)存在這樣的直線(xiàn),設(shè),MN的中點(diǎn)為

 因?yàn)閨ME|=|NE|所以MNEF所以

(i)其中若時(shí),則K=0,顯然直線(xiàn)符合題意;

(ii)下面僅考慮情形:

,得,

,得

代入1,2式中得到范圍。

(Ⅰ) 可設(shè)橢圓的標(biāo)準(zhǔn)方程為 

則由長(zhǎng)軸長(zhǎng)等于4,即2a=4,所以a=2.又,所以,

又由于 

所求橢圓C的標(biāo)準(zhǔn)方程為

 (Ⅱ) 假設(shè)存在這樣的直線(xiàn),設(shè),MN的中點(diǎn)為

 因?yàn)閨ME|=|NE|所以MNEF所以

(i)其中若時(shí),則K=0,顯然直線(xiàn)符合題意;

(ii)下面僅考慮情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

綜上(i)(ii)可知,存在這樣的直線(xiàn),其斜率k的取值范圍是

 

查看答案和解析>>

已知函數(shù),其中.

  (1)若處取得極值,求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

  (2)討論函數(shù)的單調(diào)性;

  (3)若函數(shù)上的最小值為2,求的取值范圍.

【解析】第一問(wèn),處取得極值

所以,,解得,此時(shí),可得求曲線(xiàn)在點(diǎn)

處的切線(xiàn)方程為:

第二問(wèn)中,易得的分母大于零,

①當(dāng)時(shí), ,函數(shù)上單調(diào)遞增;

②當(dāng)時(shí),由可得,由解得

第三問(wèn),當(dāng)時(shí)由(2)可知,上處取得最小值,

當(dāng)時(shí)由(2)可知處取得最小值,不符合題意.

綜上,函數(shù)上的最小值為2時(shí),求的取值范圍是

 

查看答案和解析>>


同步練習(xí)冊(cè)答案