4.C 顯然,令.則.而. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則

依題意得:,即    解得

第二問當時,,令,結(jié)合導數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

(Ⅰ)當時,,則

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,,!上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調(diào)遞增!最大值為。

綜上,當時,即時,在區(qū)間上的最大值為2;

時,即時,在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時,

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>

設(shè)a,b,c,d∈R,則條件甲:ac=2(b+d)是條件乙:方程x2+ax+b=0與方程x2+cx+d=0中至少有一個有實根的( 。
A、充分而不必要條件B、必要而不充分條件C、充要條件D、既不充分也不必要條件

查看答案和解析>>

a=log80.1,b=80.1,c=0.81.1,則a,b,c的大小關(guān)系為
a<c<b
a<c<b

查看答案和解析>>

已知函數(shù)f(x)=
log2x(x≥1)
x+c(x<1)
,則“c=-1”是“函數(shù)f(x)在R上遞增”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

(2012•靜安區(qū)一模)若a、b、c都是復數(shù),則“a2+b2>c2”是“a2+b2-c2>0”的( 。

查看答案和解析>>


同步練習冊答案