(1)寫出曲邊四邊形 查看更多

 

題目列表(包括答案和解析)

(本題滿分14分)
如圖所示,已知曲線與曲線交于點O、A,直線(0<t≤1)與曲線C1、C2分別相交于點D、B,連接OD、DA、AB。

(1)寫出曲邊四邊形ABOD(陰影部分)的面積S與t的函數(shù)關系式;
(2)求函數(shù)在區(qū)間上的最大值。

查看答案和解析>>

(本題滿分14分)

如圖所示,已知曲線與曲線交于點O、A,直線(0<t≤1)與曲線C1、C2分別相交于點D、B,連接OD、DA、AB。

(1)寫出曲邊四邊形ABOD(陰影部分)的面積S與t的函數(shù)關系式;

(2)求函數(shù)在區(qū)間上的最大值。

 

查看答案和解析>>

(本題滿分14分)
如圖所示,已知曲線與曲線交于點O、A,直線(0<t≤1)與曲線C1、C2分別相交于點D、B,連接OD、DA、AB。

(1)寫出曲邊四邊形ABOD(陰影部分)的面積S與t的函數(shù)關系式;
(2)求函數(shù)在區(qū)間上的最大值。

查看答案和解析>>

為了求函數(shù),函數(shù),軸圍成的曲邊三角形的面積,古人想出了兩種方案求其近似解(如圖):第一次將區(qū)間二等分,求出陰影部分矩形面積,記為;第二次將區(qū)間三等分,求出陰影部分矩形面積,記為;第三次將區(qū)間四等分,求出

……依此類推,記方案一中,方案二中,其中

①  求

②  求的通項公式,并證明

③  求的通項公式,類比第②步,猜想的取值范圍。并由此推出的值(只需直接寫出的范圍與的值,無須證明)

參考公式:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

為了求函數(shù),函數(shù),軸圍成的曲邊三角形的面積,古人想出了兩種方案求其近似解(如圖):第一次將區(qū)間二等分,求出陰影部分矩形面積,記為;第二次將區(qū)間三等分,求出陰影部分矩形面積,記為;第三次將區(qū)間四等分,求出
……依此類推,記方案一中,方案二中,其中
1.      求
2.      求的通項公式,并證明
3.      求的通項公式,類比第②步,猜想的取值范圍。并由此推出的值(只需直接寫出的范圍與的值,無須證明)
參考公式:

查看答案和解析>>


同步練習冊答案