①求抽取的4根鋼管中恰有2根長(zhǎng)度相同的概率,②若用表示新焊成的鋼管的長(zhǎng)度.試求的概率分布和數(shù)學(xué)期望. 查看更多

 

題目列表(包括答案和解析)

有混在一起質(zhì)地均勻且粗細(xì)相同的長(zhǎng)分別為1、2、3的鋼管各3根(每根鋼管附有不同的編號(hào)),現(xiàn)隨意抽取4根(假設(shè)各鋼管被抽取的可能性是均等的),再將抽取的4根首尾相接焊成筆直的一根.

(Ⅰ)求抽取的4根鋼管中恰有2根長(zhǎng)度相同的概率;

(Ⅱ)若用ξ表示新焊成的鋼管的長(zhǎng)度(焊接誤差不計(jì)),試求ξ的概率分布和數(shù)學(xué)期望。

查看答案和解析>>

有混在一起質(zhì)地均勻且粗細(xì)相同的長(zhǎng)分別為1m、2m、3m的鋼管各3根(每根鋼管附有不同的編號(hào)),現(xiàn)隨意抽取4根(假設(shè)各鋼管被抽取的可能性是均等的),再將抽取的4根首尾相接焊成筆直的一根。

   (I)求抽取4根鋼管中恰有2根長(zhǎng)度相同的概率;

   (II)若用ξ表示新焊成的鋼管的長(zhǎng)度(焊接誤差不計(jì)),試求ξ的概率分布和數(shù)學(xué)期望。

查看答案和解析>>

有混在一起質(zhì)地均勻且粗細(xì)相同的長(zhǎng)分別為1m、2m、3m的鋼管各3根(每根鋼管附有不同的編號(hào)),現(xiàn)隨意抽取4根(假設(shè)各鋼管被抽取的可能性是均等的),再將抽取的4根首尾相接焊成筆直的一根。

   (I)求抽取4根鋼管中恰有2根長(zhǎng)度相同的概率;

   (II)若用l表示新焊成的鋼管的長(zhǎng)度(焊接誤差不計(jì)),試求的概率和.

查看答案和解析>>

有混在一起的質(zhì)地均勻且粗細(xì)相同的長(zhǎng)分別為1 m、2 m、3 m的鋼管各3根(每根鋼管附有不同的編號(hào)),現(xiàn)隨意抽取4根(假設(shè)各鋼管被抽取的可能性是均等的),再將抽取的4根首尾相接焊成筆直的一根.

(1)求抽取的4根鋼管中恰有2根長(zhǎng)度相同的概率;

(2)若用ξ表示新焊成的鋼管的長(zhǎng)度(焊接誤差不計(jì)),試求ξ的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

一、選擇題:

1―5:BABDD            6―10:BABDC             11―12:AC

二、填空題:

13、1                   14、                     15、                  16、①③④

三、解答題:

17、解:(Ⅰ)         ……………………(2分)

    即

………………………………………………………………(4分)

由于,故…………………………………………………(6分)

(Ⅱ)由,

…………………………………………………………(8分)

…………(10分)

當(dāng)且僅當(dāng),即時(shí),取得最大值.

所以的最大值為,此時(shí)為等腰三角形.

18、解析:(1)抽取的4根鋼管中恰有2根長(zhǎng)度相同的概率為:

……………………………………………………………………(3分)

(2)新焊接成鋼管的長(zhǎng)度的可能值有7種,最短的可能值為5m,最長(zhǎng)的可能值為11m.

當(dāng)=5m與=11m時(shí)的概率為;

當(dāng)=6m與=10m時(shí)的概率為;tesoon

當(dāng)=7m與=9m時(shí)的概率為;

當(dāng)=8m時(shí)的概率為.…………………………………………(9分)

的分布列為:

5

6

7

8

9

10

11

…………………………(12分)

19、(1)圓,當(dāng)時(shí),點(diǎn)在圓上,故當(dāng)且僅當(dāng)直線過(guò)圓心C時(shí)滿足.

圓心坐標(biāo)為(1,1),…………………………………………………………(3分)

(2)由,消去可得.

………………①

設(shè),則……………………………………(5分)

,即=0.

,,即.

.

…………………………………………………………………………(9分)

(當(dāng)且僅當(dāng)時(shí)取=)

   即………………②

由①②知,

直線的傾斜角取值范圍為:…………………………………………………(12分)

20、解:(1)設(shè),

在[-1,1]上是增函數(shù)………………………………………(3分)

(2),解得:…………………………(7分)

(3)對(duì)所有恒成立,等價(jià)于的最大值不大于.

在[-1,1]上是增函數(shù),在[-1,1]上的最大值為

,得,

設(shè),是關(guān)于的一次函數(shù),要使恒成立,

只需即可,解得:.

21、解析:(1)設(shè)

處有極值,

在點(diǎn)(0,-3)處的切線平行于

…………………………………………………………………(4分)

(2)設(shè)

時(shí),(遞減)

時(shí),(遞增)

曲線上任意兩點(diǎn)的連線的斜率恒大于.

解不等式.

…………………………………………………………(8分)

(3)設(shè),則,時(shí)為[0,1]上的增函數(shù)

的值域是[-4. ].…………………………(12分)

22、解析:(1)圓彼此外切,令為圓的半徑,

兩邊平方并化簡(jiǎn)得,

由題意得,圓的半徑,

……………………………………………………………………(5分)

數(shù)列是以為首項(xiàng),以2為公差的等差數(shù)列,

所以.………………………………………………(8分)

(2),……………………………………………………(10分)

因?yàn)?sub>

…………………………………………………(12分)

所以………………………………………………………………………………(14分)

文本框: tesoon                                                                                                                               天星教育網(wǎng)(www.tesoon.com) 版權(quán)所有

天星教育網(wǎng)(www.tesoon.com) 版權(quán)所有

天星教育網(wǎng)(www.tesoon.com) 版權(quán)所有

Tesoon.com

 天星版權(quán)

天?星om

權(quán)

 

文本框: tesoon

    <li id="iqbj9"><samp id="iqbj9"><ins id="iqbj9"></ins></samp></li>
    <form id="iqbj9"><xmp id="iqbj9"></xmp></form>
    <sub id="iqbj9"></sub>

        天?星om

        權(quán)

        天?星om

        權(quán)

        Tesoon.com

         天星版權(quán)

         

         


        同步練習(xí)冊(cè)答案