題目列表(包括答案和解析)
平面直角坐標(biāo)系內(nèi)的向量都可以用一有序?qū)崝?shù)對唯一表示,這使我們想到可以用向量作為解析幾何的研究工具.如圖,設(shè)直線
l的傾斜角為α(α≠90°).在l上任取兩個不同的點,,不妨設(shè)向量的方向是向上的,那么向量的坐標(biāo)是().過原點作向量,則點P的坐標(biāo)是(),而且直線OP的傾斜角也是α.根據(jù)正切函數(shù)的定義得 ,這就是《數(shù)學(xué)
2》中已經(jīng)得到的斜率公式.上述推導(dǎo)過程比《數(shù)學(xué)2》中的推導(dǎo)簡捷.你能用向量作為工具討論一下直線的有關(guān)問題嗎?例如:(1)
過點,平行于向量的直線方程;(2)
向量(A,B)與直線的關(guān)系;(3)
設(shè)直線和的方程分別是 , ,那么,
∥,的條件各是什么?如果它們相交,如何得到它們的夾角公式?(4)
點到直線的距離公式如何推導(dǎo)?
(本小題滿分14分)
已知函數(shù),當(dāng)時,取得極小值.
(1)求,的值;
(2)設(shè)直線,曲線.若直線與曲線同時滿足下列兩個條件:
①直線與曲線相切且至少有兩個切點;
②對任意都有.則稱直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設(shè)是方程的實數(shù)根,若對于定義域中任意的、,當(dāng),且時,問是否存在一個最小的正整數(shù),使得恒成立,若存在請求出的值;若不存在請說明理由.
(本小題滿分14分)
已知函數(shù),當(dāng)時,取得極小值.
(1)求,的值;
(2)設(shè)直線,曲線.若直線與曲線同時滿足下列兩個條件:
①直線與曲線相切且至少有兩個切點;
②對任意都有.則稱直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設(shè)是方程的實數(shù)根,若對于定義域中任意的、,當(dāng),且時,問是否存在一個最小的正整數(shù),使得恒成立,若存在請求出的值;若不存在請說明理由.
(本小題滿分14分)
已知函數(shù),當(dāng)時,取得極小值.
(1)求,的值;
(2)設(shè)直線,曲線.若直線與曲線同時滿足下列兩個條件:
①直線與曲線相切且至少有兩個切點;
②對任意都有.則稱直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設(shè)是方程的實數(shù)根,若對于定義域中任意的、,當(dāng),且時,問是否存在一個最小的正整數(shù),使得恒成立,若存在請求出的值;若不存在請說明理由.
一、選擇題:
1―5:BABDD 6―10:BABDC 11―12:AC
二、填空題:
13、1 14、 15、 16、①③④
三、解答題:
17、解:(Ⅰ) ……………………(2分)
即 即
………………………………………………………………(4分)
由于,故…………………………………………………(6分)
(Ⅱ)由知,
…………………………………………………………(8分)
…………(10分)
當(dāng)且僅當(dāng),即時,取得最大值.
所以的最大值為,此時為等腰三角形.
18、解析:(1)抽取的4根鋼管中恰有2根長度相同的概率為:
……………………………………………………………………(3分)
(2)新焊接成鋼管的長度的可能值有7種,最短的可能值為5m,最長的可能值為11m.
當(dāng)=5m與=11m時的概率為;
當(dāng)=6m與=10m時的概率為;tesoon
當(dāng)=7m與=9m時的概率為;
當(dāng)=8m時的概率為.…………………………………………(9分)
的分布列為:
5
6
7
8
9
10
11
…………………………(12分)
19、(1)圓,當(dāng)時,點在圓上,故當(dāng)且僅當(dāng)直線過圓心C時滿足.
圓心坐標(biāo)為(1,1),…………………………………………………………(3分)
(2)由,消去可得.
得………………①
設(shè),則……………………………………(5分)
,即=0.
又,,即.
.
故…………………………………………………………………………(9分)
又(當(dāng)且僅當(dāng)時取=)
即………………②
由①②知,
直線的傾斜角取值范圍為:…………………………………………………(12分)
20、解:(1)設(shè),
()在[-1,1]上是增函數(shù)………………………………………(3分)
(2),解得:…………………………(7分)
(3)對所有恒成立,等價于的最大值不大于.
又在[-1,1]上是增函數(shù),在[-1,1]上的最大值為
即,得,
設(shè),是關(guān)于的一次函數(shù),要使恒成立,
只需即可,解得:或或.
21、解析:(1)設(shè)
在處有極值,即
在點(0,-3)處的切線平行于即
故…………………………………………………………………(4分)
(2)設(shè)
又時,(遞減)
時,(遞增)
曲線上任意兩點的連線的斜率恒大于.
解不等式得.
或…………………………………………………………(8分)
(3)設(shè),則,時為[0,1]上的增函數(shù)
的值域是[-4. ].…………………………(12分)
22、解析:(1)圓與彼此外切,令為圓的半徑,
即,
兩邊平方并化簡得,
由題意得,圓的半徑,
即……………………………………………………………………(5分)
數(shù)列是以為首項,以2為公差的等差數(shù)列,
所以即.………………………………………………(8分)
(2),……………………………………………………(10分)
因為
…………………………………………………(12分)
所以………………………………………………………………………………(14分)
天星教育網(wǎng)(www.tesoon.com) 版權(quán)所有
天星教育網(wǎng)(www.tesoon.com) 版權(quán)所有
天星教育網(wǎng)(www.tesoon.com) 版權(quán)所有
|