解:將點的極坐標(biāo)化為直角坐標(biāo).點的直角坐標(biāo)分別為. 查看更多

 

題目列表(包括答案和解析)

在極坐標(biāo)系中,圓和直線相交于、兩點,求線段的長

【解析】本試題主要考查了極坐標(biāo)系與參數(shù)方程的運用。先將圓的極坐標(biāo)方程圓 即 化為直角坐標(biāo)方程即

然后利用直線 ,得到圓心到直線的距離,從而利用勾股定理求解弦長AB。

解:分別將圓和直線的極坐標(biāo)方程化為直角坐標(biāo)方程:

 即 即 ,

,  ∴  圓心,    ---------3分

直線 ,   ------6分

則圓心到直線的距離,----------8分

      即所求弦長為

 

查看答案和解析>>

⊙O1和⊙O2的極坐標(biāo)方程分別為,

⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;

⑵求經(jīng)過⊙O1,⊙O2交點的直線的直角坐標(biāo)方程.

【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡單的圓冤啊位置關(guān)系的運用

(1)中,借助于公式,,將極坐標(biāo)方程化為普通方程即可。

(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。

解:以極點為原點,極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.

(I),,由.所以

為⊙O1的直角坐標(biāo)方程.

同理為⊙O2的直角坐標(biāo)方程.

(II)解法一:由解得,

即⊙O1,⊙O2交于點(0,0)和(2,-2).過交點的直線的直角坐標(biāo)方程為y=-x.

解法二: 由,兩式相減得-4x-4y=0,即過交點的直線的直角坐標(biāo)方程為y=-x

 

查看答案和解析>>

在平面直角坐標(biāo)系xoy中,已知曲線C1:x2+y2=1,以平面直角坐標(biāo)系xoy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線l:ρ(2cosθ-sinθ)=6.

(Ⅰ)將曲線C1上的所有點的橫坐標(biāo),縱坐標(biāo)分別伸長為原來的、2倍后得到曲線C2,試寫出直線l的直角坐標(biāo)方程和曲線C2的參數(shù)方程.

(Ⅱ)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.

【解析】(Ⅰ)根據(jù)極坐標(biāo)與普通方程的互化,將直線l:ρ(2cosθ-sinθ)=6化為普通方程,C2的方程為,化為普通方程;(Ⅱ)利用點到直線的距離公式表示出距離,求最值.

 

查看答案和解析>>

A.如圖,四邊形ABCD內(nèi)接于⊙O,弧AB=弧AD,過A點的切線交CB的延長線于E點.
求證:AB2=BE•CD.
B.已知矩陣M所對應(yīng)的線性變換把點A(x,y)變成點A′(13,5),試求M的逆矩陣及點A的坐標(biāo).
C.已知圓的極坐標(biāo)方程為:
(1)將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

(1)選修4-2:矩陣與變換
二階矩陣M對應(yīng)的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1;
(Ⅱ)設(shè)直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓M上的點到直線的距離的最小值.
(3)選修4一5:不等式選講
已知函數(shù)f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范圍,使f(x)為常數(shù)函數(shù);
(Ⅱ)若關(guān)于x的不等式f(x)-a≤0有解,求實數(shù)a的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案