②P∩Q=③P∩Q只有一個(gè)元素④P∩Q可以有兩個(gè)元素⑤P∩Q至多有一個(gè)元素其中正確的命題序號(hào)是 .(注:把你認(rèn)為是正確命題的序號(hào)都填上) 查看更多

 

題目列表(包括答案和解析)

若{an}是等差數(shù)列,公差為d且不為d≠0,a1,d∈R,它的前n項(xiàng)和記為Sn,設(shè)集合數(shù)學(xué)公式,數(shù)學(xué)公式給出下列命題:(1)集合Q表示的圖形是一條直線;(2)P∩Q=∅(3)P∩Q只有一個(gè)元素(4)P∩Q可以有兩個(gè)元素(5)P∩Q至多有一個(gè)元素.其中正確的命題序號(hào)是 ________(注:把你認(rèn)為是正確命題的序號(hào)都填上)

查看答案和解析>>

若{an}是等差數(shù)列,公差為d且不為d≠0,a1,d∈R,它的前n項(xiàng)和記為Sn,設(shè)集合給出下列命題:(1)集合Q表示的圖形是一條直線;(2)P∩Q=∅(3)P∩Q只有一個(gè)元素(4)P∩Q可以有兩個(gè)元素(5)P∩Q至多有一個(gè)元素.其中正確的命題序號(hào)是     (注:把你認(rèn)為是正確命題的序號(hào)都填上)

查看答案和解析>>

若{an}是等差數(shù)列,公差為d且不為d≠0,a1,d∈R,它的前n項(xiàng)和記為Sn,設(shè)集合P={(x,y)|
x2
4
-y2=1,x,y∈R}
,Q={(x,y)|x=an,y=
Sn
n
,n∈N*}
給出下列命題:(1)集合Q表示的圖形是一條直線;(2)P∩Q=∅(3)P∩Q只有一個(gè)元素(4)P∩Q可以有兩個(gè)元素(5)P∩Q至多有一個(gè)元素.其中正確的命題序號(hào)是
 
(注:把你認(rèn)為是正確命題的序號(hào)都填上)

查看答案和解析>>

若{an}是等差數(shù)列,公差為d且不為d≠0,a1,d∈R,它的前n項(xiàng)和記為Sn,設(shè)集合P={(x,y)|
x2
4
-y2=1,x,y∈R}
,Q={(x,y)|x=an,y=
Sn
n
,n∈N*}
給出下列命題:(1)集合Q表示的圖形是一條直線;(2)P∩Q=∅(3)P∩Q只有一個(gè)元素(4)P∩Q可以有兩個(gè)元素(5)P∩Q至多有一個(gè)元素.其中正確的命題序號(hào)是 ______(注:把你認(rèn)為是正確命題的序號(hào)都填上)

查看答案和解析>>

若數(shù)列{an},{bn}中,a1=a,b1=b,
an=-2an-1+4bn-1
bn=-5an-1+7bn-1
,(n∈N,n≥2).請按照要求完成下列各題,并將答案填在答題紙的指定位置上.
(1)可考慮利用算法來求am,bm的值,其中m為給定的數(shù)據(jù)(m≥2,m∈N).右圖算法中,虛線框中所缺的流程,可以為下面A、B、C、D中的
ACD
ACD

(請?zhí)畛鋈看鸢福?BR>A、B、
C、D、

(2)我們可證明當(dāng)a≠b,5a≠4b時(shí),{an-bn}及{5an-4bn}均為等比數(shù)列,請按答紙題要求,完成一個(gè)問題證明,并填空.
證明:{an-bn}是等比數(shù)列,過程如下:an-bn=(-2an-1+4bn-1)+(5an-1-7bn-1)=3an-1-3bn-1=3(an-1-bn-1
所以{an-bn}是以a1-b1=a-b≠0為首項(xiàng),以
3
3
為公比的等比數(shù)列;
同理{5an-4bn}是以5a1-4b1=5a-4b≠0為首項(xiàng),以
2
2
為公比的等比數(shù)列
(3)若將an,bn寫成列向量形式,則存在矩陣A,使
an
bn
=A
an-1
bn-1
=A(A
an-2
bn-2
)=A2
an-2
bn-2
=…=An-1
a1
b1
,請回答下面問題:
①寫出矩陣A=
-24
-57
-24
-57
;  ②若矩陣Bn=A+A2+A3+…+An,矩陣Cn=PBnQ,其中矩陣Cn只有一個(gè)元素,且該元素為Bn中所有元素的和,請寫出滿足要求的一組P,Q:
P=
1 
1 
Q=
1
1
P=
1 
1 
,Q=
1
1
; ③矩陣Cn中的唯一元素是
2n+2-4
2n+2-4

計(jì)算過程如下:

查看答案和解析>>

 

一、              選擇題(本大題共8小題,每小題5分,共40分)

 

題號(hào)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

答案

C

C

A

B

C

A

D

C

 

 

二、填空題(本大題共6小題,每小題5分,有兩空的小題,第一空3分,第二空2分,共30分)

(9)7    (10)2    (11)     (12)2,12π    (13)1,    (14)⑤

三、解答題(本大題共6小題,共80分.解答應(yīng)寫出文字說明,演算步驟或證明過程)

(15)(本小題共12分)

解:(Ⅰ)f(x)=2sinxcosx+(2cos2x1)

=sin2x+cos2x …………………………………………2分(化對一個(gè)給一分)

=2sin(2x+)………………………………………………………………………3分

x

ωx+

0

2

f(x)

0

2

0

2

0

…………………………………………………………………………………………6分

(x的值對兩個(gè)給一分,全對給2分,不出現(xiàn)0.5分.f(x)的值全對給1分)

圖象略.(圖象完全正確給分)………………………………………………………8分

(Ⅱ)由2kπ+≤2x+≤2kπ+(k∈) …………………………………………9分

得kπ+ ≤x≤kπ+(k∈)

單調(diào)減區(qū)間為(k∈)………………………………………12分

注:(k∈)也可以
(16)(本小題共14分)

解:(Ⅰ)證明:連接AC1,設(shè)AC1∩A1C=E,連接DE…………………………1分

∵A1B1C1-ABC是直三棱柱,且AC=AA1=

∴AA1C1C是正方形,E是AC1中點(diǎn),

又D為AB中點(diǎn)  ∴ED∥BC1…………………………………………3分

又ED平面A1CD,BC1平面A1CD

∴BC1∥平面A1CD………………………………………………………5分

(Ⅱ)法一:設(shè)H是AC中點(diǎn),F(xiàn)是EC中點(diǎn),連接

DH,HF,F(xiàn)D……………………………6分

∵D為AB中點(diǎn),

∴DH∥BC,同理可證HF∥AE,又AC⊥CB,

故DH⊥AC

又側(cè)棱AA1⊥平面ABC,

∴AA1⊥DH  ∴DH⊥平面AA1C1C………8分

由(Ⅰ)得AA1C1C是正方形,則A1C⊥AE

∴A1C⊥HF

∵HF是DF在平面AA1C1C上的射影,

∴DF⊥A1C

∴∠DFH是二面角A-A1C-D的平面角…10分

又DH=,…………………………………12分

∴在直角三角形DFH中,……………13分

∴二面角A-A1C-D的大小為………………………………14分

法二:在直三棱柱A1B1C1-ABC中,∵AC⊥CB ∴分別以CA,CB,CC1所在的直線為x軸,y軸,z軸建立如圖所示空間直角坐標(biāo)系C-xyz.因?yàn)锽C=1,AA1=AC=,則C(0,0,0),A(,0,0),A1,0,),B(0,1,0),,… 7分設(shè)平面A1DC的法向量為n=(x,y,z),則

…………………………………8分

=,=(,0,),

  則,……9分

 

取x=1,得平面A1DC的一個(gè)法向量為n=(1,,1).…………10分

m==(0,1,0)為平面CAA1C1的一個(gè)法向量.…………………11分

  ………………………………12分
由圖可知,二面角A-A1C-D的大小為……………………14分

(17)(本小題共14分)

解:(Ⅰ)設(shè)點(diǎn)P的坐標(biāo)為(x,y),……1分

,……3分

化簡可得(x5)2+y2=16即為所求……5分

(Ⅱ)曲線C是以點(diǎn)(5,0)為圓心,4為半徑的

圓,如圖則直線l2是此圓的切線,連接CQ,則

|QM|=…7分

當(dāng)CQ⊥l1時(shí),|CQ|取最小值 …………………………………………8分

|CQ|=……10分(公式、結(jié)果各一分)

此時(shí)|QM|的最小值為,…………………………………12分

這樣的直線l2有兩條,設(shè)滿足條件的兩個(gè)公共點(diǎn)為M1,M2

易證四邊形M1CM2Q是正方形

∴l(xiāng)2的方程是x=1或y=4……………………………………………14分

(18)(本小題共13分)

解:(Ⅰ)無故障使用時(shí)間不超過一年的概率為,

無故障使用時(shí)間超過一年不超過三年的概率為

無故障使用時(shí)間超過三年的概率為,…………1分

設(shè)銷售兩臺(tái)這種家用電器的銷售利潤總和為400元的事件為A……2分

………………………………………………………7分

答:銷售兩臺(tái)這種家用電器的銷售利潤總和為400元的概率為.

(Ⅱ)設(shè)銷售三臺(tái)這種家用電器的銷售利潤總和為300元的事件為B……8分

…………12分(兩類情況,每類2分)

……………………………………………………………13分

答:銷售三臺(tái)這種家用電器的銷售利潤總和為300元的概率為.

 

 

(19)(本小題共14分)

解:(Ⅰ)由已知可得

,……………………………………………………………2分

所以a=2,b=1,…………………………………………………………3分

橢圓方程為 …………………………………………………4分

(Ⅱ)α+β是定值π ……………………………………………………5分

由(Ⅰ),A2(2,0),B(0,1),且l∥A2B

所以直線l的斜率,……………………………………6分

設(shè)直線l的方程為y=x+m,P(x1,y1),Q(x2,y2

 …………………………………………………………7分

∴Δ=4m24(2m22)=84m2≥0,即≤m≤…………………8分

 …………………………………………………………9分

∵P、Q兩點(diǎn)不是橢圓的頂點(diǎn) ∴α≠、β≠

 

…………………………10分

又因?yàn)閥1=x1+m,y2=x2+m

=

=

  又α,β∈(0,π)

∴α+β∈(0,2π)

∴α+β=π是定值.…………………………………………………………14分

 

 

 

 

 

 

 

(20)(本小題共13分)

解:(Ⅰ)

,

即數(shù)列是以0為首項(xiàng),1為公差的等差數(shù)列……………………3分

,an=(n1)qn  (n=1,2,3,…)

(Ⅱ)bn=an+2n=(n-1)qn+2n ……………………………………………………4分

∴b1=2,b2=q2+4,b3=2q3+8…………………………………………………5分

b1b3=(q2+4)22(2q3+8)=(q4+8q2+16) 4q316

=q44q3+8q2=q2(q24q+8)=q2[(q2)2+4]>0

>b1b3…………………………………………………………………8分

(Ⅲ)∵bn=(n1)qn+2n,n=1,2,3…,∴bn >0

b1=2,b1=q2+4,bn+1=nqn+1+2n+1

,

………………………………………9分

①當(dāng)n=1時(shí),b2bnb1bn+1,即

②當(dāng)n≥2時(shí),∵q>0,q2+4≥2?q?2=4q

∴(q2+4)(n1) 2nq≥4(n1)q2nq=2(n-2)q≥0又q2?2n>0

∴b2bnb1bn+1>0

由①②得≥0,即對于任意的正整數(shù)n, 恒成立

故所求的正整數(shù)k=1.…………………………………………………………13分

說明:其他正確解法按相應(yīng)步驟給分.

 


同步練習(xí)冊答案