得.② 由①②解得.. 查看更多

 

題目列表(包括答案和解析)

解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此

解:因?yàn)楹瘮?shù)沒有零點(diǎn),所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點(diǎn),由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)

(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱有一個(gè)巧合,求巧合數(shù)的分布列。

查看答案和解析>>

設(shè)。
(1)求f(x)的表達(dá)式;
(2)設(shè)函數(shù)g(x)=ax2-+ f(x),則是否存在實(shí)數(shù)a,使得g(x)為奇函數(shù)?說明理由;
(3)解不等式f(x)-x>2。

查看答案和解析>>

如圖,橢圓E:的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率。過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長(zhǎng)為8

(Ⅰ)求橢圓E的方程。

(Ⅱ)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相較于點(diǎn)Q。試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由

【解析】

 

查看答案和解析>>

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中AA1=AD=1,E為CD中點(diǎn)。

(Ⅰ)求證:B1E⊥AD1;

(Ⅱ)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的行;若存在,求AP的長(zhǎng);若不存在,說明理由。

(Ⅲ)若二面角A-B1EA1的大小為30°,求AB的長(zhǎng)

【解析】

查看答案和解析>>

如圖,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四邊形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分別為CE、AB的中點(diǎn).

(Ⅰ)證明:OD//平面ABC;

(Ⅱ)能否在EM上找一點(diǎn)N,使得ON⊥平面ABDE?若能,請(qǐng)指出點(diǎn)N的位置,并加以證明;若不能,請(qǐng)說明理由.

【解析】第一問:取AC中點(diǎn)F,連結(jié)OF、FB.∵F是AC的中點(diǎn),O為CE的中點(diǎn),

∴OF∥EA且OF=且BD=

∴OF∥DB,OF=DB,

∴四邊形BDOF是平行四邊形。

∴OD∥FB

第二問中,當(dāng)N是EM中點(diǎn)時(shí),ON⊥平面ABDE。           ………7分

證明:取EM中點(diǎn)N,連結(jié)ON、CM, AC=BC,M為AB中點(diǎn),∴CM⊥AB,

又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM面ABC,

∴CM⊥面ABDE,∵N是EM中點(diǎn),O為CE中點(diǎn),∴ON∥CM,

∴ON⊥平面ABDE。

 

查看答案和解析>>


同步練習(xí)冊(cè)答案