解:(1)設(shè)小球運(yùn)動到N點(diǎn)時速度為v0.則有: 查看更多

 

題目列表(包括答案和解析)

選做題(請從A、B和C三小題中選定兩小題作答,并在答題卡上把所選題目對應(yīng)字母后的方框涂滿涂黑,如都作答則按A、B兩小題評分.)
A.(選修模塊3-3)
(1)下列說法中正確的是
ABD
ABD

A、被活塞封閉在氣缸中的一定質(zhì)量的理想氣體,若體積不變,壓強(qiáng)增大,則氣缸在單位面積上,單位時間內(nèi)受到的分子碰撞次數(shù)增加
B、晶體中原子(或分子、離子)都按照一定規(guī)則排列,具有空間上的周期性
C、分子間的距離r存在某一值r0,當(dāng)r大于r0時,分子間斥力大于引力;當(dāng)r小于r0時分子間斥力小于引力
D、由于液體表面分子間距離大于液體內(nèi)部分子間的距離,液面分子間表現(xiàn)為引力,所以液體表面具有收縮的趨勢
(2)如圖所示,一定質(zhì)量的理想氣體發(fā)生如圖所示的狀態(tài)變化,狀態(tài)A與狀態(tài)B 的體積關(guān)系為VA
小于
小于
VB(選填“大于”、“小于”或“等于”); 若從A狀態(tài)到C狀態(tài)的過程中氣體對外做了100J的功,則此過程中
吸熱
吸熱
(選填“吸熱”或“放熱”)

(3)在“用油膜法測量分子直徑”的實(shí)驗(yàn)中,將濃度為η的一滴油酸溶液,輕輕滴入水盆中,穩(wěn)定后形成了一層單分子油膜.測得一滴油酸溶液的體積為V0,形成的油膜面積為S,則油酸分子的直徑約為
6S3
πη2
V
2
0
6S3
πη2
V
2
0
;如果把油酸分子看成是球形的(球的體積公式為V=
1
6
πd3
,d為球直徑),計(jì)算該滴油酸溶液所含油酸分子的個數(shù)約為多少.
B.(選修模塊3-4)(12分)
(1)下列說法中正確的是
C
C

A、光的偏振現(xiàn)象證明了光波是縱波
B、在發(fā)射無線電波時,需要進(jìn)行調(diào)諧和解調(diào)
C、在白熾燈的照射下從兩塊捏緊的玻璃板表面看到彩色條紋,這是光的干涉現(xiàn)象
D、考慮相對論效應(yīng),一條沿自身長度方向運(yùn)動的桿其長度總比桿靜止時的長度長
(2)一列橫波沿x軸正方向傳播,在t0=0時刻的波形如圖所示,波剛好傳到x=3m處,此后x=1m處的質(zhì)點(diǎn)比x=-1m處的質(zhì)點(diǎn)
(選填“先”、“后”或“同時”)到達(dá)波峰位置;若該波的波速為10m/s,經(jīng)過△t時間,在x軸上-3m~3m區(qū)間內(nèi)的波形與t0時刻的正好相同,則△t=
0.4nsn=1.2.3…
0.4nsn=1.2.3…


(3)如圖所示的裝置可以測量棱鏡的折射率,ABC表示待測直角棱鏡的橫截面,棱鏡的頂角為α,緊貼直角邊AC是一塊平面鏡,一光線SO射到棱鏡的AB面上,適當(dāng)調(diào)整SO的方向,當(dāng)SO與AB成β角時,從AB面射出的光線與SO重合,則棱鏡的折射率n為多少?

C.(選修模塊3-5)
(1)下列說法正確的是
AC
AC

A、黑體輻射電磁波的強(qiáng)度按波長的分布只與黑體的溫度有關(guān)
B、普朗克提出了物質(zhì)波的概念,認(rèn)為一切物體都具有波粒二象性.
C、波爾理論的假設(shè)之一是原子能量的量子化
D、氫原子輻射出一個光子后能量減小,核外電子的運(yùn)動加速度減小
(2)如圖所示是研究光電效應(yīng)規(guī)律的電路.圖中標(biāo)有A和K的為光電管,其中K為陰極,A為陽極.現(xiàn)接通電源,用光子能量為10.5eV的光照射陰極K,電流計(jì)中有示數(shù),若將滑動變阻器的滑片P緩慢向右滑動,電流計(jì)的讀數(shù)逐漸減小,當(dāng)滑至某一位置時電流計(jì)的讀數(shù)恰好為零,讀出此時電壓表的示數(shù)為6.0V;則光電管陰極材料的逸出功為
4.5
4.5
eV,現(xiàn)保持滑片P位置不變,增大入射光的強(qiáng)度,電流計(jì)的讀數(shù)
為零
為零
.(選填“為零”、或“不為零”)
(3)快中子增殖反應(yīng)堆中,使用的核燃料是钚239,裂變時釋放出快中子,周圍的鈾238吸收快中子后變成鈾239,鈾239(92239U)很不穩(wěn)定,經(jīng)過
2
2
次β衰變后變成钚239(94239Pu),寫出該過程的核反應(yīng)方程式:
92239U→94239Pu+2-10e
92239U→94239Pu+2-10e
.設(shè)靜止的鈾核92239U發(fā)生一次β衰變生成的新核質(zhì)量為M,β粒子質(zhì)量為m,釋放出的β粒子的動能為E0,假設(shè)衰變時能量全部以動能形式釋放出來,求一次衰變過程中的質(zhì)量虧損.

查看答案和解析>>

第二部分  牛頓運(yùn)動定律

第一講 牛頓三定律

一、牛頓第一定律

1、定律。慣性的量度

2、觀念意義,突破“初態(tài)困惑”

二、牛頓第二定律

1、定律

2、理解要點(diǎn)

a、矢量性

b、獨(dú)立作用性:ΣF → a ,ΣFx → ax 

c、瞬時性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。

3、適用條件

a、宏觀、低速

b、慣性系

對于非慣性系的定律修正——引入慣性力、參與受力分析

三、牛頓第三定律

1、定律

2、理解要點(diǎn)

a、同性質(zhì)(但不同物體)

b、等時效(同增同減)

c、無條件(與運(yùn)動狀態(tài)、空間選擇無關(guān))

第二講 牛頓定律的應(yīng)用

一、牛頓第一、第二定律的應(yīng)用

單獨(dú)應(yīng)用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個環(huán)節(jié)。

應(yīng)用要點(diǎn):合力為零時,物體靠慣性維持原有運(yùn)動狀態(tài);只有物體有加速度時才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。

1、如圖1所示,在馬達(dá)的驅(qū)動下,皮帶運(yùn)輸機(jī)上方的皮帶以恒定的速度向右運(yùn)動,F(xiàn)將一工件(大小不計(jì))在皮帶左端A點(diǎn)輕輕放下,則在此后的過程中(      

A、一段時間內(nèi),工件將在滑動摩擦力作用下,對地做加速運(yùn)動

B、當(dāng)工件的速度等于v時,它與皮帶之間的摩擦力變?yōu)殪o摩擦力

C、當(dāng)工件相對皮帶靜止時,它位于皮帶上A點(diǎn)右側(cè)的某一點(diǎn)

D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)

解說:B選項(xiàng)需要用到牛頓第一定律,A、C、D選項(xiàng)用到牛頓第二定律。

較難突破的是A選項(xiàng),在為什么不會“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a →  ,則ΣFx   ,必然會出現(xiàn)“供不應(yīng)求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動?因?yàn)槿耸强梢孕巫、重心可以調(diào)節(jié)的特殊“物體”)

此外,本題的D選項(xiàng)還要用到勻變速運(yùn)動規(guī)律。用勻變速運(yùn)動規(guī)律和牛頓第二定律不難得出

只有當(dāng)L > 時(其中μ為工件與皮帶之間的動摩擦因素),才有相對靜止的過程,否則沒有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達(dá)皮帶右端的時間t(過程略,答案為5.5s)

進(jìn)階練習(xí):在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學(xué)生分以下三組進(jìn)行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:

① 如果在P處剪斷細(xì)繩,在剪斷瞬時,B的加速度是多少?

② 如果在Q處剪斷彈簧,在剪斷瞬時,B的加速度又是多少?

解說:第①問是常規(guī)處理。由于“彈簧不會立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時B鉤碼的加速度為零(A的加速度則為2g)。

第②問需要我們反省這樣一個問題:“彈簧不會立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點(diǎn)剪斷彈簧時,彈簧卻是沒有慣性的(沒有質(zhì)量),遵從理想模型的條件,彈簧應(yīng)在一瞬間恢復(fù)原長!即彈簧彈力突變?yōu)榱恪?/p>

答案:0 ;g 。

二、牛頓第二定律的應(yīng)用

應(yīng)用要點(diǎn):受力較少時,直接應(yīng)用牛頓第二定律的“矢量性”解題。受力比較多時,結(jié)合正交分解與“獨(dú)立作用性”解題。

在難度方面,“瞬時性”問題相對較大。

1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。

解說:受力分析 → 根據(jù)“矢量性”定合力方向  牛頓第二定律應(yīng)用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應(yīng)具備一個多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應(yīng)注意區(qū)別。答:gtgθ。)

進(jìn)階練習(xí)1:在一向右運(yùn)動的車廂中,用細(xì)繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)

進(jìn)階練習(xí)2、如圖4所示,小車在傾角為α的斜面上勻加速運(yùn)動,車廂頂用細(xì)繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個穩(wěn)定的夾角β。試求小車的加速度。

解:繼續(xù)貫徹“矢量性”的應(yīng)用,但數(shù)學(xué)處理復(fù)雜了一些(正弦定理解三角形)。

分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應(yīng)的夾角。設(shè)張力T與斜面方向的夾角為θ,則

θ=(90°+ α)- β= 90°-(β-α)                 (1)

對灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)兩式得:ΣF = 

最后運(yùn)用牛頓第二定律即可求小球加速度(即小車加速度)

答: 。

2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運(yùn)動。斜面上用一條與斜面平行的細(xì)繩系一質(zhì)量為m的小球,當(dāng)斜面加速度為a時(a<ctgθ),小球能夠保持相對斜面靜止。試求此時繩子的張力T 。

解說:當(dāng)力的個數(shù)較多,不能直接用平行四邊形尋求合力時,宜用正交分解處理受力,在對應(yīng)牛頓第二定律的“獨(dú)立作用性”列方程。

正交坐標(biāo)的選擇,視解題方便程度而定。

解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上兩式成為

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

這是一個關(guān)于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ

解法二:下面嘗試一下能否獨(dú)立地解張力T 。將正交分解的坐標(biāo)選擇為:x——斜面方向,y——和斜面垂直的方向。這時,在分解受力時,只分解重力G就行了,但值得注意,加速度a不在任何一個坐標(biāo)軸上,是需要分解的。矢量分解后,如圖8所示。

根據(jù)獨(dú)立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

顯然,獨(dú)立解T值是成功的。結(jié)果與解法一相同。

答案:mgsinθ + ma cosθ

思考:當(dāng)a>ctgθ時,張力T的結(jié)果會變化嗎?(從支持力的結(jié)果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)

學(xué)生活動:用正交分解法解本節(jié)第2題“進(jìn)階練習(xí)2”

進(jìn)階練習(xí):如圖9所示,自動扶梯與地面的夾角為30°,但扶梯的臺階是水平的。當(dāng)扶梯以a = 4m/s2的加速度向上運(yùn)動時,站在扶梯上質(zhì)量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。

解:這是一個展示獨(dú)立作用性原理的經(jīng)典例題,建議學(xué)生選擇兩種坐標(biāo)(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進(jìn)而充分領(lǐng)會用牛頓第二定律解題的靈活性。

答:208N 。

3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知。現(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時加速度。

解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。

(學(xué)生活動)思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時釋放,會有什么現(xiàn)象?原因是什么?

結(jié)論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。

第二步,在本例中,突破“繩子的拉力如何瞬時調(diào)節(jié)”這一難點(diǎn)(從即將開始的運(yùn)動來反推)。

知識點(diǎn),牛頓第二定律的瞬時性。

答案:a = gsinθ ;a = gtgθ 。

應(yīng)用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當(dāng)懸掛吊籃的細(xì)繩被燒斷瞬間,P、Q的加速度分別是多少?

解:略。

答:2g ;0 。

三、牛頓第二、第三定律的應(yīng)用

要點(diǎn):在動力學(xué)問題中,如果遇到幾個研究對象時,就會面臨如何處理對象之間的力和對象與外界之間的力問題,這時有必要引進(jìn)“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時地運(yùn)用牛頓第三定律。

在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。

對N個對象,有N個隔離方程和一個(可能的)整體方程,這(N + 1)個方程中必有一個是通解方程,如何取舍,視解題方便程度而定。

補(bǔ)充:當(dāng)多個對象不具有共同的加速度時,一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個局限(可以介紹推導(dǎo)過程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。

1、如圖12所示,光滑水平面上放著一個長為L的均質(zhì)直棒,現(xiàn)給棒一個沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關(guān)系怎樣?

解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。

答案:N = x 。

思考:如果水平面粗糙,結(jié)論又如何?

解:分兩種情況,(1)能拉動;(2)不能拉動。

第(1)情況的計(jì)算和原題基本相同,只是多了一個摩擦力的處理,結(jié)論的化簡也麻煩一些。

第(2)情況可設(shè)棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。

答:若棒仍能被拉動,結(jié)論不變。

若棒不能被拉動,且F = μMg時(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當(dāng)x<(L-l),N≡0 ;當(dāng)x>(L-l),N = 〔x -〈L-l〉〕。

應(yīng)用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個長方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結(jié)論會變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應(yīng)對盒子的哪一側(cè)內(nèi)壁有壓力?

解:略。

答:(1)不會;(2)沒有;(3)若斜面光滑,對兩內(nèi)壁均無壓力,若斜面粗糙,對斜面上方的內(nèi)壁有壓力。

2、如圖15所示,三個物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計(jì),繩子的質(zhì)量也不計(jì),為使三個物體無相對滑動,水平推力F應(yīng)為多少?

解說:

此題對象雖然有三個,但難度不大。隔離m2 ,豎直方向有一個平衡方程;隔離m1 ,水平方向有一個動力學(xué)方程;整體有一個動力學(xué)方程。就足以解題了。

答案:F =  。

思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個恰當(dāng)?shù)腇′,使三者無相對運(yùn)動?如果沒有,說明理由;如果有,求出這個F′的值。

解:此時,m2的隔離方程將較為復(fù)雜。設(shè)繩子張力為T ,m2的受力情況如圖,隔離方程為:

 = m2a

隔離m,仍有:T = m1a

解以上兩式,可得:a = g

最后用整體法解F即可。

答:當(dāng)m1 ≤ m2時,沒有適應(yīng)題意的F′;當(dāng)m1 > m2時,適應(yīng)題意的F′=  。

3、一根質(zhì)量為M的木棒,上端用細(xì)繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示。現(xiàn)將系木棒的繩子剪斷,同時貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?

解說:法一,隔離法。需要設(shè)出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動力學(xué)方程,解方程組即可。

法二,“新整體法”。

據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的連接體

當(dāng)系統(tǒng)中各個體的加速度不相等時,經(jīng)典的整體法不可用。如果各個體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時,我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。

解題思想:抓某個方向上加速度關(guān)系。方法:“微元法”先看位移關(guān)系,再推加速度關(guān)系。、

1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。

解說:本題涉及兩個物體,它們的加速度關(guān)系復(fù)雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時,務(wù)必在這個方向上進(jìn)行突破。

(學(xué)生活動)定型判斷斜面的運(yùn)動情況、滑塊的運(yùn)動情況。

位移矢量示意圖如圖19所示。根據(jù)運(yùn)動學(xué)規(guī)律,加速度矢量a1和a2也具有這樣的關(guān)系。

(學(xué)生活動)這兩個加速度矢量有什么關(guān)系?

沿斜面方向、垂直斜面方向建x 、y坐標(biāo),可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔離滑塊和斜面,受力圖如圖20所示。

對滑塊,列y方向隔離方程,有:

mgcosθ- N = ma1y     ③

對斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(學(xué)生活動)思考:如何求a1的值?

解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。

答:a1 =  。

2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動,開始時與棒的A端相距b ,相對棒靜止。當(dāng)棒保持傾角θ不變地沿水平面勻加速運(yùn)動,加速度為a(且a>gtgθ)時,求滑套C從棒的A端滑出所經(jīng)歷的時間。

解說:這是一個比較特殊的“連接體問題”,尋求運(yùn)動學(xué)參量的關(guān)系似乎比動力學(xué)分析更加重要。動力學(xué)方面,只需要隔離滑套C就行了。

(學(xué)生活動)思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)

定性繪出符合題意的運(yùn)動過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標(biāo)后,S1x表示S1在x方向上的分量。不難看出:

S1x + b = S cosθ                   ①

設(shè)全程時間為t ,則有:

S = at2                          ②

S1x = a1xt2                        ③

而隔離滑套,受力圖如圖23所示,顯然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引進(jìn)動力學(xué)在非慣性系中的修正式 Σ* = m (注:*為慣性力),此題極簡單。過程如下——

以棒為參照,隔離滑套,分析受力,如圖24所示。

注意,滑套相對棒的加速度a是沿棒向上的,故動力學(xué)方程為:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒為參照,滑套的相對位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二講 配套例題選講

教材范本:龔霞玲主編《奧林匹克物理思維訓(xùn)練教材》,知識出版社,2002年8月第一版。

例題選講針對“教材”第三章的部分例題和習(xí)題。

查看答案和解析>>

第三部分 運(yùn)動學(xué)

第一講 基本知識介紹

一. 基本概念

1.  質(zhì)點(diǎn)

2.  參照物

3.  參照系——固連于參照物上的坐標(biāo)系(解題時要記住所選的是參照系,而不僅是一個點(diǎn))

4.絕對運(yùn)動,相對運(yùn)動,牽連運(yùn)動:v=v+v 

二.運(yùn)動的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大學(xué)教材中表述為:v=dr/dt, 表示r對t 求導(dǎo)數(shù)

5.以上是運(yùn)動學(xué)中的基本物理量,也就是位移、位移的一階導(dǎo)數(shù)、位移的二階導(dǎo)數(shù)?墒

三階導(dǎo)數(shù)為什么不是呢?因?yàn)榕nD第二定律是F=ma,即直接和加速度相聯(lián)系。(a對t的導(dǎo)數(shù)叫“急動度”。)

6.由于以上三個量均為矢量,所以在運(yùn)算中用分量表示一般比較好

三.等加速運(yùn)動

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道經(jīng)典的物理問題:二次世界大戰(zhàn)中物理學(xué)家曾經(jīng)研究,當(dāng)大炮的位置固定,以同一速度v0沿各種角度發(fā)射,問:當(dāng)飛機(jī)在哪一區(qū)域飛行之外時,不會有危險?(注:結(jié)論是這一區(qū)域?yàn)橐粧佄锞,此拋物線是所有炮彈拋物線的包絡(luò)線。此拋物線為在大炮上方h=v2/2g處,以v0平拋物體的軌跡。) 

練習(xí)題:

一盞燈掛在離地板高l2,天花板下面l1處。燈泡爆裂,所有碎片以同樣大小的速度v 朝各個方向飛去。求碎片落到地板上的半徑(認(rèn)為碎片和天花板的碰撞是完全彈性的,即切向速度不變,法向速度反向;碎片和地板的碰撞是完全非彈性的,即碰后靜止。)

四.剛體的平動和定軸轉(zhuǎn)動

1. 我們講過的圓周運(yùn)動是平動而不是轉(zhuǎn)動 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是標(biāo)量,而極小的角位移是矢量

4.  同一剛體上兩點(diǎn)的相對速度和相對加速度 

兩點(diǎn)的相對距離不變,相對運(yùn)動軌跡為圓弧,VA=VB+VAB,在AB連線上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三質(zhì)點(diǎn)速度分別V,VB  ,VC      

求G的速度。

五.課后習(xí)題:

一只木筏離開河岸,初速度為V,方向垂直于岸邊,航行路線如圖。經(jīng)過時間T木筏劃到路線上標(biāo)有符號處。河水速度恒定U用作圖法找到在2T,3T,4T時刻木筏在航線上的確切位置。

五、處理問題的一般方法

(1)用微元法求解相關(guān)速度問題

例1:如圖所示,物體A置于水平面上,A前固定一滑輪B,高臺上有一定滑輪D,一根輕繩一端固定在C點(diǎn),再繞過B、D,BC段水平,當(dāng)以恒定水平速度v拉繩上的自由端時,A沿水平面前進(jìn),求當(dāng)跨過B的兩段繩子的夾角為α?xí)r,A的運(yùn)動速度。

(vA

(2)拋體運(yùn)動問題的一般處理方法

  1. 平拋運(yùn)動
  2. 斜拋運(yùn)動
  3. 常見的處理方法

(1)將斜上拋運(yùn)動分解為水平方向的勻速直線運(yùn)動和豎直方向的豎直上拋運(yùn)動

(2)將沿斜面和垂直于斜面方向作為x、y軸,分別分解初速度和加速度后用運(yùn)動學(xué)公式解題

(3)將斜拋運(yùn)動分解為沿初速度方向的斜向上的勻速直線運(yùn)動和自由落體運(yùn)動兩個分運(yùn)動,用矢量合成法則求解

例2:在擲鉛球時,鉛球出手時距地面的高度為h,若出手時的速度為V0,求以何角度擲球時,水平射程最遠(yuǎn)?最遠(yuǎn)射程為多少?

(α=、 x=

第二講 運(yùn)動的合成與分解、相對運(yùn)動

(一)知識點(diǎn)點(diǎn)撥

  1. 力的獨(dú)立性原理:各分力作用互不影響,單獨(dú)起作用。
  2. 運(yùn)動的獨(dú)立性原理:分運(yùn)動之間互不影響,彼此之間滿足自己的運(yùn)動規(guī)律
  3. 力的合成分解:遵循平行四邊形定則,方法有正交分解,解直角三角形等
  4. 運(yùn)動的合成分解:矢量合成分解的規(guī)律方法適用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

參考系的轉(zhuǎn)換:動參考系,靜參考系

相對運(yùn)動:動點(diǎn)相對于動參考系的運(yùn)動

絕對運(yùn)動:動點(diǎn)相對于靜參考系統(tǒng)(通常指固定于地面的參考系)的運(yùn)動

牽連運(yùn)動:動參考系相對于靜參考系的運(yùn)動

(5)位移合成定理:SA對地=SAB+SB對地

速度合成定理:V絕對=V相對+V牽連

加速度合成定理:a絕對=a相對+a牽連

(二)典型例題

(1)火車在雨中以30m/s的速度向南行駛,雨滴被風(fēng)吹向南方,在地球上靜止的觀察者測得雨滴的徑跡與豎直方向成21。角,而坐在火車?yán)锍丝涂吹接甑蔚膹桔E恰好豎直方向。求解雨滴相對于地的運(yùn)動。

提示:矢量關(guān)系入圖

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定樓梯,又以不同方式上了兩趟自動扶梯,為什么他可以根據(jù)測得的數(shù)據(jù)來計(jì)算自動扶梯的臺階數(shù)?

提示:V人對梯=n1/t1

      V梯對地=n/t2

      V人對地=n/t3

V人對地= V人對梯+ V梯對地

答案:n=t2t3n1/(t2-t3)t1

(3)某人駕船從河岸A處出發(fā)橫渡,如果使船頭保持跟河岸垂直的方向航行,則經(jīng)10min后到達(dá)正對岸下游120m的C處,如果他使船逆向上游,保持跟河岸成а角的方向航行,則經(jīng)過12.5min恰好到達(dá)正對岸的B處,求河的寬度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河寬l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,為了使小船靠岸時,不至于被沖進(jìn)瀑布中,船對水的最小速度為多少?

提示:如圖船航行

答案:1.58m/s

(三)同步練習(xí)

1.一輛汽車的正面玻璃一次安裝成與水平方向傾斜角為β1=30°,另一次安裝成傾角為β2=15°。問汽車兩次速度之比為多少時,司機(jī)都是看見冰雹都是以豎直方向從車的正面玻璃上彈開?(冰雹相對地面是豎直下落的)

2、模型飛機(jī)以相對空氣v=39km/h的速度繞一個邊長2km的等邊三角形飛行,設(shè)風(fēng)速u = 21km/h ,方向與三角形的一邊平行并與飛機(jī)起飛方向相同,試求:飛機(jī)繞三角形一周需多少時間?

3.圖為從兩列蒸汽機(jī)車上冒出的兩股長幅氣霧拖尾的照片(俯視)。兩列車沿直軌道分別以速度v1=50km/h和v2=70km/h行駛,行駛方向如箭頭所示,求風(fēng)速。

4、細(xì)桿AB長L ,兩端分別約束在x 、 y軸上運(yùn)動,(1)試求桿上與A點(diǎn)相距aL(0< a <1)的P點(diǎn)運(yùn)動軌跡;(2)如果vA為已知,試求P點(diǎn)的x 、 y向分速度vPx和vPy對桿方位角θ的函數(shù)。

(四)同步練習(xí)提示與答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案為:3。

2、提示:三角形各邊的方向?yàn)轱w機(jī)合速度的方向(而非機(jī)頭的指向);

第二段和第三段大小相同。

參見右圖,顯然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法與練習(xí)一類似。答案為:3

4、提示:(1)寫成參數(shù)方程后消參數(shù)θ。

(2)解法有講究:以A端為參照, 則桿上各點(diǎn)只繞A轉(zhuǎn)動。但鑒于桿子的實(shí)際運(yùn)動情形如右圖,應(yīng)有v = vAcosθ,v轉(zhuǎn) = vA,可知B端相對A的轉(zhuǎn)動線速度為:v轉(zhuǎn) + vAsinθ=  。

P點(diǎn)的線速度必為  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,為橢圓;(2)vPx = avActgθ ,vPy =(1 - a)vA

查看答案和解析>>


同步練習(xí)冊答案