在三棱柱中....為中點(diǎn).平面⊥平面. 查看更多

 

題目列表(包括答案和解析)

在三棱柱中,,

⑴求證:平面平面;

⑵如果D為AB的中點(diǎn),求證:∥平面

 

 

 

查看答案和解析>>

如圖,在三棱柱中,,,的中點(diǎn),且.

(1)求證:⊥平面;(2)求三棱錐的體積.

查看答案和解析>>

如圖,在三棱柱中, ,,,點(diǎn)的中點(diǎn),.

(Ⅰ)求證:∥平面;

(Ⅱ)設(shè)點(diǎn)在線段上,,且使直線和平面所成的角的正弦值為,求的值.

 

查看答案和解析>>

在三棱柱中,各側(cè)面均為正方形,側(cè)面的對角線相交于點(diǎn),則與平面所成角的大小是(    )

A.30°             B.45°             C.60°             D.90

 

查看答案和解析>>

在三棱柱中,底面是正三角形,側(cè)棱底面,點(diǎn)是側(cè)面 的中心,若,則直線與平面所成角的大小為(   )

A.             B.             C.             D.

 

查看答案和解析>>

一、選擇題:每小題5分,滿分60.

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

A

A

A

A

B

D

D

B

C

C

二、填空題:每小題5分,滿分20.

13.

14. 

15.

16.①③④

三、解答題

17.設(shè)兩個(gè)實(shí)數(shù)為a,b,,建立平面直角坐標(biāo)系aOb, 則點(diǎn)在正方形OABC內(nèi)       ……… 2分

(Ⅰ) 記事件A“兩數(shù)之和小于1.2”,即,則滿足條件的點(diǎn)在多邊形OAEFC內(nèi)

所以                                    ……… 6分

(Ⅱ) 記事件B“兩數(shù)的平方和小于0.25”,則滿足條件的點(diǎn)在扇形內(nèi)

所以                                                                    ………10分

18.∵m?n                                ……… 4分

  再由余弦定理得:

(Ⅰ)由,故                      ……… 8分

(Ⅱ)由

解得,所以的取值范圍是         ………12分

19.(Ⅰ)連接,交,易知中點(diǎn),故在△中,為邊的中位線,故,平面平面,所以∥平面            ……… 5分

(Ⅱ)在平面內(nèi)過點(diǎn),垂足為H,

∵平面⊥平面,且平面∩平面

⊥平面,∴,                                 ……… 8分

又∵,中點(diǎn),∴

⊥平面,∴,又∵

⊥平面.                                                           ………12分

20.(Ⅰ)∵是各項(xiàng)均為正數(shù)的等差數(shù)列,且公差

 ∴           ……… 3分

為常數(shù),∴是等差數(shù)列           ……… 5分

(Ⅱ)∵,∴

是公差為1的等差數(shù)列                                       ……… 7分

,∴       ……… 9分

當(dāng)時(shí),                                   ………10分

當(dāng)時(shí),

綜上,                                                               ………12分

21.(Ⅰ)                                                                       ……… 4分

(Ⅱ)由橢圓的對稱性知:PRQS為菱形,原點(diǎn)O到各邊距離相等……… 5分

⑴當(dāng)P在y軸上時(shí),易知R在x軸上,此時(shí)PR方程為,

.                                                       ……… 6分

⑵當(dāng)P在x軸上時(shí),易知R在y軸上,此時(shí)PR方程為,

.                                                       ……… 7分

⑶當(dāng)P不在坐標(biāo)軸上時(shí),設(shè)PQ斜率為k,、

P在橢圓上,.......①;R在橢圓上,......②

利用Rt△POR可得                               ……… 9分

即 

整理得 .                                               ………11分

再將①②帶入,得

綜上當(dāng)時(shí),有.                                       ………12分

22.(Ⅰ)∵,且,∴

∴在上, 變化情況如下表:

x

 

 

b

                                                                                            ……… 2分

∵函數(shù)上的最大值為1,

,此時(shí)應(yīng)有

                                                                  ……… 4分

(Ⅱ)                                                                             ……… 6分

所求切線方程為                                             ……… 8分

(Ⅲ)                                   ………10分

設(shè)

     

∴當(dāng)時(shí),函數(shù)的無極值點(diǎn)

當(dāng)時(shí),函數(shù)有兩個(gè)極值點(diǎn)                 ………12分

 

 


同步練習(xí)冊答案