集合.下列函數: 查看更多

 

題目列表(包括答案和解析)

下列選項中正確的是(  )
A、命題p:?x0∈R,tanx0=1;命題q:?x∈R,x2-x+1>0,則命題“p∧?q”是真命題B、集合M={x|x2<4},N={x|x2-2x-3<0},則M∩N={x|-2<x<3}C、命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”D、函數f(x)=x2+2(m-2)x+4在[1,+∞)上為增函數,則m的取值范圍是m<1

查看答案和解析>>

下列五個命題:(1)y=sin4x-cos4x的最小正周期是π;
(2)終邊在y軸上的角的集合是{x|x=
2
,k∈Z}

(3)在同一坐標系中,y=sinx的圖象和y=x的圖象有三個公共點;
(4)y=sin(x-
π
2
)
在[0,π]上是減函數;
(5)把y=3sin(2x+
π
3
)
的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象.
其中真命題的序號是
 

查看答案和解析>>

下列四說法:
①不等式0.52x>0.5x-1的解集為(-1,+∞);
②已知2m=3n=36,則
1
m
+
1
n
的值為
1
2
;
③函數y=3+loga(2x+3),(a>0,a≠1)的圖象恒經過的定點P的坐標為(-1,3);
④已知集合A={y|y=log2x,x>1},B={y|y=(
1
2
)x,x>1}
,則A∩B={y|0<y<
1
2
}

其中正確的說法是(  )
A、②③B、②③④
C、①③④D、①②③④

查看答案和解析>>

下列命題中:
①集合A={ x|0≤x<3且x∈N }的真子集的個數是8;
②將三個數:x=20.2,y=(
1
2
)2
,z=log2
1
2
按從大到小排列正確的是z>x>y;
③函數f(x)=x2+(3a+1)x+2a在 (-∞,4)上為減函數,則實數a的取值范圍是a≤-3;
④已知函數y=4x-4•2x+1(-1≤x≤2),則函數的值域為[-
3
4
,1];
⑤定義在(-1,0)的函數f(x)=log(2a)(x+1)滿足f(x)>0的實數a的取值范圍是0<a<
1
2
;
⑥關于x的一元二次方程x2+mx+2m+1=0一個根大于1,一個根小于1,則實數m的取值范圍m<-
2
3
;
其中正確的有
③⑤⑥
③⑤⑥
(請把所有滿足題意的序號都填在橫線上)

查看答案和解析>>

集合Mk(k≥0)是滿足下列條件的函數f(x)全體:如果對于任意的x1,x2∈(k,+∞),都有f(x1)+f(x2)>f(x1+x2).
(1)函數f(x)=x2是否為集合M0的元素,說明理由;
(2)求證:當0<a<1時,函數f(x)=ax是集合M1的元素;
(3)對數函數f(x)=lgx∈Mk,求k的取值范圍.

查看答案和解析>>

一、選擇題:每小題5分,滿分60.

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

A

A

A

A

B

D

D

B

C

C

二、填空題:每小題5分,滿分20.

13.

14. 

15.

16.①③④

三、解答題

17.設兩個實數為a,b,,建立平面直角坐標系aOb, 則點在正方形OABC內       ……… 2分

(Ⅰ) 記事件A“兩數之和小于1.2”,即,則滿足條件的點在多邊形OAEFC內

所以                                    ……… 6分

(Ⅱ) 記事件B“兩數的平方和小于0.25”,則滿足條件的點在扇形內

所以                                                                    ………10分

18.∵m?n                                ……… 4分

  再由余弦定理得:

(Ⅰ)由,故                      ……… 8分

(Ⅱ)由

解得,所以的取值范圍是         ………12分

19.(Ⅰ)連接,交,易知、中點,故在△中,為邊的中位線,故,平面,平面,所以∥平面            ……… 5分

(Ⅱ)在平面內過點,垂足為H

∵平面⊥平面,且平面∩平面

⊥平面,∴,                                 ……… 8分

又∵,中點,∴

⊥平面,∴,又∵,

⊥平面.                                                           ………12分

20.(Ⅰ)∵是各項均為正數的等差數列,且公差

 ∴           ……… 3分

為常數,∴是等差數列           ……… 5分

(Ⅱ)∵,∴

是公差為1的等差數列                                       ……… 7分

,∴       ……… 9分

時,                                   ………10分

時,

綜上,                                                               ………12分

21.(Ⅰ)                                                                       ……… 4分

(Ⅱ)由橢圓的對稱性知:PRQS為菱形,原點O到各邊距離相等……… 5分

⑴當P在y軸上時,易知R在x軸上,此時PR方程為,

.                                                       ……… 6分

⑵當P在x軸上時,易知R在y軸上,此時PR方程為,

.                                                       ……… 7分

⑶當P不在坐標軸上時,設PQ斜率為k,、

P在橢圓上,.......①;R在橢圓上,......②

利用Rt△POR可得                               ……… 9分

即 

整理得 .                                               ………11分

再將①②帶入,得

綜上當時,有.                                       ………12分

22.(Ⅰ)∵,且,∴

∴在上, 變化情況如下表:

x

 

 

b

                                                                                            ……… 2分

∵函數上的最大值為1,

,此時應有

,                                                                  ……… 4分

(Ⅱ)                                                                             ……… 6分

所求切線方程為                                             ……… 8分

(Ⅲ)                                   ………10分

     

∴當時,函數的無極值點

時,函數有兩個極值點                 ………12分

 

 


同步練習冊答案