23.選修4-4:坐標系與參數(shù)方程. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分10分)選修4-4:坐標系與參數(shù)方程.
已知曲線C:為參數(shù),0≤<2π),
(Ⅰ)將曲線化為普通方程;
(Ⅱ)求出該曲線在以直角坐標系原點為極點,軸非負半軸為極軸的極坐標系下的極坐標方程.

查看答案和解析>>

(本小題滿分10分)選修4-4:坐標系與參數(shù)方程已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是:是參數(shù)).

(1)將曲線C的極坐標方程和直線參數(shù)方程轉(zhuǎn)化為普通方程;

(2)若直線l與曲線C相交于A、B兩點,且,試求實數(shù)值.

 

查看答案和解析>>

(本小題滿分10分)選修4-4:坐標系與參數(shù)方程

已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是:是參數(shù)).

(I)將曲線C的極坐標方程和直線參數(shù)方程轉(zhuǎn)化為普通方程;

(II)若直線l與曲線C相交于A、B兩點,且,試求實數(shù)值.

 

查看答案和解析>>

(本小題滿分10分)選修4-4:坐標系與參數(shù)方程

已知極坐標的極點在平面直角坐標系的原點處,極軸與軸的正半軸重合,且長度單位相同.圓的參數(shù)方程為(為參數(shù)),點的極坐標為. (1)化圓的參數(shù)方程為極坐標方程;

(2)若點是圓上的任意一點, 求,兩點間距離的最小值.

 

查看答案和解析>>

(本小題滿分10分)選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程是,曲線的參數(shù)方程是

是參數(shù)).

(1)寫出曲線的直角坐標方程和曲線的普通方程;

(2)求的取值范圍,使得,沒有公共點.

 

查看答案和解析>>

 

一、選擇題.(單項選擇,5×12=60分.答案涂在答題卡上的相應(yīng)位置.)

1.C  2. A  3. B  4. B  5. B  6. B  7. A  8. C  9.D  10. B  11.D  12. B

二、填空題.( 5×4=20分,答案寫在答題紙的相應(yīng)空格內(nèi).)

<sup id="zmx8k"><samp id="zmx8k"><s id="zmx8k"></s></samp></sup>
  • <menuitem id="zmx8k"></menuitem>

    dyr232

    三、解答題.(12×5+10=70分,答案寫在答題紙的答題區(qū)內(nèi).)

    17.(Ⅰ)∵ m?n                                                     ……… 2分

    ,解得                                              ……… 6分

    (Ⅱ)           ……… 8分

    ,∴                                          ………10分

    的值域為[]                                                       ………12分

     

    18.(Ⅰ)把一根長度為8的鐵絲截成3段,且三段的長度均為整數(shù),共有21種解法.

    (可視為8個相同的小球放入3個不同盒子,有種方法)   …   3分

    其中能構(gòu)成三角形的情況有3種情況:“2,3,3”、“3,2,3”、“3,3,2”

    則所求的概率是                                                         ……… 6分

    (Ⅱ)根據(jù)題意知隨機變量                                               ……… 8分

                  ……12分

    19.(Ⅰ)∵點A、D分別是的中點,∴. …… 2分

    ∴∠=90º.∴.∴ ,                                                   

    ,∴⊥平面.                       ……… 4分

    平面,∴.                                                ……… 5分

    (Ⅱ)建立如圖所示的空間直角坐標系

    (-1,0,0),(-2,1,0),(0,0,1).

    =(-1,1,0),=(1,0,1),  …6分

    設(shè)平面的法向量為=(x,y,z),則:

    ,                                                     ……… 8分

    ,得,∴=(1,1,-1)

    顯然,是平面的一個法向量,=().       ………10分

    ∴cos<,>=. 

    ∴二面角的平面角的余弦值是.                    ………12分

     

    20.(Ⅰ)                                                                       ……… 4分

    (Ⅱ)由橢圓的對稱性知:PRQS為菱形,原點O到各邊距離相等………            5分

    ⑴當P在y軸上時,易知R在x軸上,此時PR方程為

    .                                                       ……… 6分

    ⑵當P在x軸上時,易知R在y軸上,此時PR方程為

    .                                                       ……… 7分

    ⑶當P不在坐標軸上時,設(shè)PQ斜率為k,、

    P在橢圓上,.......①;R在橢圓上,....

    ②利用Rt△POR可得            ……… 9分

    即 

    整理得 .                                               ………11分

    再將①②帶入,得

    綜上當時,有.                ………12分

     

    21.(Ⅰ)時,單調(diào)遞減,

    單調(diào)遞增。

    ①若無解;

    ②若

    ③若時,上單調(diào)遞增,

    所以                                               ……… 4分

    (Ⅱ)

    設(shè)時,

    單調(diào)遞減,單調(diào)遞增,

    所以因為對一切

    恒成立,所以;                                             ……… 8分

    (Ⅲ)問題等價于證明,

    由(Ⅰ)可知

    當且僅當時取到,設(shè)

    ,當且僅當時取到,

    從而對一切成立.                ………12分

     

    22.(Ⅰ)連接OC,∵OA=OB,CA=CB  ∴OC⊥AB∴AB是⊙O的切線         … 5分

    (Ⅱ)∵ED是直徑,∴∠ECD=90°∴∠E+∠EDC=90°

    又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E

    又∵∠CBD+∠EBC,∴△BCD∽△BEC       ∴  ∴BC2=BD•BE

    ∵tan∠CED=,∴∵△BCD∽△BEC, ∴

    設(shè)BD=x,則BC=2      又BC2=BD•BE,∴(2x)2=x•(x+6)

    解得x1=0,x2=2, ∵BD>0, ∴BD=2∴OA=OB=BD+OD=3+2=5    … 10分

     

    23.(Ⅰ)                                                             …  5分

    (Ⅱ)                                                                  … 10分

     

    23.(Ⅰ),                                                                              …  5分

    (Ⅱ)

                               … 10分

     

     


    同步練習冊答案