解:(Ⅰ)易得. ----1分 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)學數(shù)學,其實是要使人聰明,使人的思維更加縝密,在美國廣為流傳的一道數(shù)學題目是:老板給你兩個加工資的方案。一是每年年末加一千元;二是每半年結束時加300元。請選擇一種。一般不擅長數(shù)學的人很容易選擇前者,因為一年加一千元總比兩個半年共加600元要多。其實,由于工資累計的,時間稍長,往往第二種方案更有利。例如在第二年的年末,依第一種方案可以加得1000+2000=3000元,而第二種方案在第一年加得300+600=900元,第二年加得900+1200=2100元,總數(shù)也是900+2100=3000元。但到了第三年,第一種方案可以得到1000+2000+3000=6000元,第二種方案可以得到300+600+900+1200+1500+1800=6300元,比第一方案多了300元。第四年,第五年會更多。因此,你若會在公司干三年以上,則應選擇第二種方案。

根據(jù)以上材料,解答以下問題:
 。1)如果在該公司干10年,問選擇第二方案比選擇第一方案多加薪多少元?
  (2)如果第二方案中得每半年加300元改成每半年加 元,問 取何值時,選                                 擇第二方案總是比選擇第一方案多加薪?

查看答案和解析>>

如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點,且平面平面.

(Ⅰ)求證:點為棱的中點;

(Ⅱ)判斷四棱錐的體積是否相等,并證明。

【解析】本試題主要考查了立體幾何中的體積問題的運用。第一問中,

易知,。由此知:從而有又點的中點,所以,所以點為棱的中點.

(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點,可以得證。

(1)過點點,取的中點,連。且相交于,面內(nèi)的直線,!3分

且相交于,且為等腰三角形,易知,。由此知:,從而有共面,又易知,故有從而有又點的中點,所以,所以點為棱的中點.               …6分

(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點,∴VA1-B1C1CD=VC-A1ABD

 

查看答案和解析>>

如圖1,在中,,D,E分別為AC,AB的中點,點F為線段CD上的一點,將沿DE折起到的位置,使,如圖2.

(Ⅰ)求證:DE∥平面

(Ⅱ)求證:

(Ⅲ)線段上是否存在點Q,使?說明理由。

【解析】(1)∵DE∥BC,由線面平行的判定定理得出

(2)可以先證,得出,∵

(3)Q為的中點,由上問,易知,取中點P,連接DP和QP,不難證出,又∵

 

查看答案和解析>>

設橢圓(常數(shù))的左右焦點分別為,是直線上的兩個動點,

(1)若,求的值;

(2)求的最小值.

【解析】第一問中解:設,

    由,得

  ② 

第二問易求橢圓的標準方程為:

,

所以,當且僅當時,取最小值

解:設 ……………………1分

,由     ①……2分

(1)由,得  ②   ……………1分

    ③    ………………………1分

由①、②、③三式,消去,并求得. ………………………3分

(2)解法一:易求橢圓的標準方程為:.………………2分

, ……4分

所以,當且僅當時,取最小值.…2分

解法二:, ………………4分

所以,當且僅當時,取最小值

 

查看答案和解析>>

已知函數(shù),其中.

  (1)若處取得極值,求曲線在點處的切線方程;

  (2)討論函數(shù)的單調(diào)性;

  (3)若函數(shù)上的最小值為2,求的取值范圍.

【解析】第一問,處取得極值

所以,,解得,此時,可得求曲線在點

處的切線方程為:

第二問中,易得的分母大于零,

①當時, ,函數(shù)上單調(diào)遞增;

②當時,由可得,由解得

第三問,當時由(2)可知,上處取得最小值,

時由(2)可知處取得最小值,不符合題意.

綜上,函數(shù)上的最小值為2時,求的取值范圍是

 

查看答案和解析>>


同步練習冊答案