(2)點(diǎn)從左到右依次是函數(shù)圖象上三點(diǎn).其中求證:ㄓ是鈍角三角形. 第Ⅱ部分 加試內(nèi)容(命題單位:通州中學(xué) 滿(mǎn)分40分.答卷時(shí)間30分鐘) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=aln(1+ex)-(a+1)x,(其中a>0),點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))從左到右依次是函數(shù)y=f(x)圖象上三點(diǎn),且2x2=x1+x3
(Ⅰ)證明:函數(shù)f(x)在(-∞,+∞)上是減函數(shù);
(Ⅱ)求證:△ABC是鈍角三角形;
(Ⅲ)試問(wèn)△ABC能否是等腰三角形?若能,求△ABC面積的最大值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)=aln(1+ex)-(a+1)x,(其中a>0),點(diǎn)A(x1,f(x1),,B(x2•f(x2))C(x3,f(x3))從左到右依次是函數(shù)y=f(x)圖象上的不同點(diǎn),且x1,x2,x3成等差數(shù)列.
(1)證明:函數(shù)f(x)在R上是單調(diào)遞減函數(shù);
(2)證明:△ABC為鈍角三角形;
(3)請(qǐng)問(wèn)△ABC能否成為等腰三角形?若能,求△ABC面積的最大值;若不能,說(shuō)明理由.

查看答案和解析>>

對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱(chēng)x0為f(x)的不動(dòng)點(diǎn).如果函數(shù)f(x)=
x2+a
bx-c
(b,c∈N*)
有且僅有兩個(gè)不動(dòng)點(diǎn)0、2,且f(-2)<-
1
2

(1)試求函數(shù)f(x)的單調(diào)區(qū)間;
(2)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))從左到右依次是函數(shù)y=f(x)圖象上三點(diǎn),其中1<xi<2(i=1,2,3),求證:△ABC是鈍角三角形.

查看答案和解析>>

已知函數(shù)f(x)=aln(1+ex)-(a+1)x.
(1)已知f(x)滿(mǎn)足下面兩個(gè)條件,求a的取值范圍.
①在(-∞,1]上存在極值,
②對(duì)于任意的θ∈R,c∈R直線(xiàn)l:xsinθ+2y+c=0都不是函數(shù)y=f(x)(x∈(-1,+∞))圖象的切線(xiàn);
(2)若點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))從左到右依次是函數(shù)y=f(x)圖象上三點(diǎn),且2x2=x1+x3,當(dāng)a>0時(shí),△ABC能否是等腰三角形?若能,求△ABC面積的最大值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

對(duì)于函數(shù),若存在,使成立,則稱(chēng)的不動(dòng)點(diǎn)。如果

函數(shù)有且僅有兩個(gè)不動(dòng)點(diǎn)、,且。

(1)試求函數(shù)的單調(diào)區(qū)間;

(2)點(diǎn)從左到右依次是函數(shù)圖象上三點(diǎn),其中求證:⊿是鈍角三角形.

查看答案和解析>>

一、填空題:

1. ,均有x 2+ x +1≥0  2.第一象限  3.充分而不必要條件  4. 0.01

5. 4   6. 2550   7.    8.①④  9.  R(S1+S2+S3+S4)

10. ,11.   12.1  13.  14.

二、解答題:

15.(Ⅰ)因?yàn)楦鹘M的頻率和等于1,故第四組的頻率:

     3′

直方圖如右所示        6′

(Ⅱ)依題意,60及以上的分?jǐn)?shù)所在的第三、四、五、六組,頻率和為 所以,抽樣學(xué)生成績(jī)的合格率是%..       9 ′

利用組中值估算抽樣學(xué)生的平均分

=71

估計(jì)這次考試的平均分是71分                                            12′      

16.(1)證明:連結(jié)BD.

在長(zhǎng)方體中,對(duì)角線(xiàn).

E、F為棱AD、AB的中點(diǎn),

 .

 .                           

B1D1平面,平面,

  EF∥平面CB1D1.                       6′

(2) 在長(zhǎng)方體中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1,

 AA1B1D1.

在正方形A1B1C1D1中,A1C1B1D1,

 B1D1⊥平面CAA1C1.                 

B1D1平面CB1D1,

*平面CAA1C1⊥平面CB1D1.                    13′

17. (1)由                  4′

       由正弦定理得

             

                                       6′

                    8′

 (2)

     =                                  10′

 =                                          12′

  由(1)得

                            15′

18.(1)設(shè)C:+=1(a>b>0),設(shè)c>0,c2=a2-b2,由條件知a-c=,=,

∴a=1,b=c=,

故C的方程為:y2+=1                   5′

(2)由=λ,

∴λ+1=4,λ=3 或O點(diǎn)與P點(diǎn)重合=              7′

當(dāng)O點(diǎn)與P點(diǎn)重合=時(shí),m=0

當(dāng)λ=3時(shí),直線(xiàn)l與y軸相交,則斜率存在。

設(shè)l與橢圓C交點(diǎn)為A(x1,y1),B(x2,y2

得(k2+2)x2+2kmx+(m2-1)=0

Δ=(2km2-4(k2+2)(m2-1)=4(k22m2+2)>0 (*)

x1+x2=, x1x2=                           11′

∵=3 ∴-x1=3x2

消去x2,得3(x1+x22+4x1x2=0,∴3()2+4=0

 

整理得4k2m22m2-k2-2=0                          13′

m2=時(shí),上式不成立;m2≠時(shí),k2=,

因λ=3 ∴k≠0 ∴k2=>0,∴-1<m<- 或 <m<1

容易驗(yàn)證k2>2m2-2成立,所以(*)成立

即所求m的取值范圍為(-1,-)∪(,1)∪{0}                 16′

19. ⑴由題意得                  4′

(n≥2),

又∵,

數(shù)列是以為首項(xiàng),以2為公比的等比數(shù)列。        8′

[則)]

⑵由

,                                   11′

          13′

 

                                               16′

20. (1)設(shè)

                ∴     ∴

           由

           又∵    ∴    

                               6′ 

           于是

;   由

           故函數(shù)的單調(diào)遞增區(qū)間為,

單調(diào)減區(qū)間為                              10′

(2)證明:據(jù)題意x1<x2<x3,

由(1)知f (x1)>f (x2)>f (x3),

          14′

即ㄓ是鈍角三角形.                                            18′

 

 

 

 

第Ⅱ部分  加試內(nèi)容

一.必答題:

1.(1)記事件A為“任取兩張卡片,將卡片上的函數(shù)相加得到的函數(shù)是奇函數(shù)”,由題意知                       4′

   (2)ξ可取1,2,3,4.

   

    ;    8′

    故ξ的分布列為

ξ

1

2

3

4

P

                                                             

   

答:ξ的數(shù)學(xué)期望為                                      10′

2.(1)由,

求得                               3′

(2)猜想                                     5′

證明:①當(dāng)n=1時(shí),猜想成立。                            6′

②設(shè)當(dāng)n=k時(shí)時(shí),猜想成立,即,      7′

則當(dāng)n=k+1時(shí),有,

所以當(dāng)n=k+1時(shí)猜想也成立                                9′

③綜合①②,猜想對(duì)任何都成立。                  10′

二、選答題:

3.(1)∵DE2=EF?EC,

          ∴DE : CE=EF: ED.

          ∵ÐDEF是公共角,

          ∴ΔDEF∽ΔCED.  ∴ÐEDF=ÐC.

          ∵CD∥AP,    ∴ÐC=Ð P.

          ∴ÐP=ÐEDF.----5′

(2)∵ÐP=ÐEDF,    ÐDEF=ÐPEA,

     ∴ΔDEF∽ΔPEA. ∴DE : PE=EF : EA.即EF?EP=DE?EA.

∵弦AD、BC相交于點(diǎn)E,∴DE?EA=CE?EB.∴CE?EB=EF?EP.   10′

4.(矩陣與變換)

解:.

,                                                5′

橢圓的作用下的新曲線(xiàn)的方程為         10′

5.(1)直線(xiàn)的參數(shù)方程為,即.         5′

   (2)把直線(xiàn)代入,

,,
則點(diǎn)兩點(diǎn)的距離之積為.                   10′

6.

        7′

當(dāng)且僅當(dāng)  且

 F有最小值                                         10′

 

 


同步練習(xí)冊(cè)答案