題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實(shí)數(shù)和,不等式恒成立,試求實(shí)數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯(cuò);+==≥4,故A錯(cuò);由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯(cuò).故選C.
.定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )
(A) (B) (C) (D)
.過點(diǎn)作圓的弦,其中弦長為整數(shù)的共有 ( )
A.16條 B. 17條 C. 32條 D. 34條
一、選擇題 D C C C A C B CAB D B
二、填空題 13. 14. 15. -8 16.
三、解答題
17.(10分) 解:(Ⅰ)由已知得
由余弦定理得,即…………………………3分
因?yàn)殇J角△ABC中,A+B+C=p,,所以,則
………………………6分
(Ⅱ),則.將,代入余弦定理:得解得.…10分
18.(12分) 解:(Ⅰ)依題意,當(dāng)甲連勝局或乙連勝局時(shí),第二局賽完時(shí)比賽結(jié)束.
有. 解得或. , .…5分
(Ⅱ)依題意知,的所有可能值為2,4,6.
設(shè)每兩局比賽為一輪,則該輪賽完時(shí)比賽結(jié)束的概率為.
若該輪賽完時(shí)比賽還將繼續(xù),則甲、乙在該輪中必是各得1分,此時(shí),該輪比賽結(jié)果對下輪比賽是否停止沒有影響.
從而有, , .
隨機(jī)變量的分布列為:
2
4
6
…………………………………………………………………………………………10分
………………………………………………12分
19.(12分)解:(Ⅰ),面,
,又,
面. …………………………………………………………4分
(Ⅱ)過作垂足為,則.
過作,垂足為,由三垂線定理得;
是所求二面角的平面角.……………………6分
設(shè),,
在中,由,
得,所以.
在中,,,
故所求二面角的度數(shù)為.…………………………………………8分
(Ⅲ)面,要使,由三垂線定理可知,只需,
為菱形,此時(shí)
又,要使為中點(diǎn),只需,
即為正三角形,.
,且點(diǎn)D落在BC上,即為側(cè)棱與底面所成的角.
故當(dāng)時(shí), 且使點(diǎn)D為BC的中點(diǎn).………………12分
20.(12分)
解:(Ⅰ)
…………………………………………………………………………………………2分
由.
……5分
(Ⅱ)若的圖像與的圖像恰有四個(gè)不同交點(diǎn),
即有四個(gè)不同的根,亦即方程有四個(gè)不同的根.…………………7分
令,
則.…………………8分
當(dāng)變化時(shí)的變化情況如下表:
-1
(-1,0)
0
(0,1)
1
(1,)
的符號
+
0
-
0
+
0
-
的單調(diào)性
ㄊ
極大值
ㄋ
極小值
ㄊ
極大值
ㄋ
由表格知:.……10分
可知,當(dāng)時(shí),
…………………12分
21.(12分)解:(Ⅰ)由題意:點(diǎn)P是AB的垂直平分線與BF的交點(diǎn),
且
∴P點(diǎn)軌跡為以A、F為焦點(diǎn)的橢圓.………………………………3分
設(shè)方程為
……………………………………………6分
(Ⅱ)假設(shè)存在滿足題意的直線l,若l斜率不存在,易知
不符合題意,故其斜率存在,設(shè)為k,設(shè)
……………8分
解得 代入驗(yàn)證成立
…………………………………………12分
22. 解:(Ⅰ) 由
∴ ……………………………………………………3分
(Ⅱ)∵
∴,
∴…………7分
(Ⅲ)由(Ⅱ)知
而
當(dāng)時(shí),
法1:∴
∴…………………………12分
法2:原不等式只需證:
∵時(shí),
∴
∴
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com