∴.故原不等式成立. 查看更多

 

題目列表(包括答案和解析)

要證,只需證,即需,即需證,即證35>11,因?yàn)?5>11顯然成立,所以原不等式成立。以上證明運(yùn)用了

A.比較法           B.綜合法           C.分析法           D.反證法

 

查看答案和解析>>

某同學(xué)在證明命題“
7
-
3
6
-
2
”時作了如下分析,請你補(bǔ)充完整.
要證明
7
-
3
6
-
2
,只需證明
7
+
2
6
+
3
7
+
2
6
+
3
,只需證明
(
7
+
2
)2<(
6
+
3
)2
(
7
+
2
)2<(
6
+
3
)2

展開得9+2
14
<9+2
18
,即
14
18
,只需證明14<18,
因?yàn)?4<18顯然成立
因?yàn)?4<18顯然成立
,
所以原不等式:
7
+
2
6
+
3
成立.

查看答案和解析>>

“解方程(”有如下思路;設(shè),則在R上單調(diào)遞減,且,故原方程有唯一解x=2,類比上述解題思路,不等式的解集是         .

 

查看答案和解析>>

當(dāng)P為何值時,對任意實(shí)數(shù)x,不等式-9<≤6恒   成立.

將原不等式等價轉(zhuǎn)化為一元二次不等式組.

查看答案和解析>>

已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實(shí)數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">

,得

當(dāng)x變化時,,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當(dāng)時,取,有,故時不合題意.當(dāng)時,令,即

,得

①當(dāng)時,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當(dāng)時,,對于,,故上單調(diào)遞增.因此當(dāng)取時,,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.

當(dāng)時,

                      

                      

在(2)中取,得

從而

所以有

     

     

     

     

      

綜上,,

 

查看答案和解析>>


同步練習(xí)冊答案