題目列表(包括答案和解析)
要證,只需證,即需,即需證,即證35>11,因?yàn)?5>11顯然成立,所以原不等式成立。以上證明運(yùn)用了
A.比較法 B.綜合法 C.分析法 D.反證法
7 |
3 |
6 |
2 |
7 |
3 |
6 |
2 |
7 |
2 |
6 |
3 |
7 |
2 |
6 |
3 |
7 |
2 |
6 |
3 |
7 |
2 |
6 |
3 |
14 |
18 |
14 |
18 |
7 |
2 |
6 |
3 |
“解方程(”有如下思路;設(shè),則在R上單調(diào)遞減,且,故原方程有唯一解x=2,類比上述解題思路,不等式的解集是 .
當(dāng)P為何值時,對任意實(shí)數(shù)x,不等式-9<≤6恒 成立.
將原不等式等價轉(zhuǎn)化為一元二次不等式組.
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有≤成立,求實(shí)數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">
由,得
當(dāng)x變化時,,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當(dāng)時,取,有,故時不合題意.當(dāng)時,令,即
令,得
①當(dāng)時,,在上恒成立。因此在上單調(diào)遞減.從而對于任意的,總有,即在上恒成立,故符合題意.
②當(dāng)時,,對于,,故在上單調(diào)遞增.因此當(dāng)取時,,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.
當(dāng)時,
在(2)中取,得 ,
從而
所以有
綜上,,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com