(1)由題設(shè) 知∴ 查看更多

 

題目列表(包括答案和解析)

設(shè){an}是各項(xiàng)均為正數(shù)的無(wú)窮項(xiàng)等差數(shù)列.(本題中必要時(shí)可使用公式:12+22+33+…+n2=
n(n+1)(2n+1)
6

(Ⅰ)記Sn=a1+a2+…+an,Tn=a12+a22+…+an2,已知Snn2+n-1,Tn
4n3-n
3
(n∈N*),試求此等差數(shù)列的首項(xiàng)a1及公差d;
(Ⅱ)若{an}的首項(xiàng)a1及公差d都是正整數(shù),問(wèn)在數(shù)列{an}中是否包含一個(gè)非常數(shù)列的無(wú)窮項(xiàng)等比數(shù)列{a′m}?若存在,請(qǐng)寫出{a′m}的構(gòu)造過(guò)程;若不存在,說(shuō)明理由.

查看答案和解析>>

設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),它的前n項(xiàng)和為Sn(n∈N*),已知點(diǎn)(an,4Sn)在函數(shù)f (x)=x2+2x+1的圖象上.
(1)證明{an}是等差數(shù)列,并求an;
(2)設(shè)m、k、p∈N*,m+p=2k,求證:
1
Sm
+
1
Sp
2
Sk
;
(3)對(duì)于(2)中的命題,對(duì)一般的各項(xiàng)均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請(qǐng)證明你的結(jié)論,如果不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

設(shè)數(shù)列{an}的前n項(xiàng)積為Tn,已知對(duì)?n,m∈N+,當(dāng)n>m時(shí),總有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常數(shù)).
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)正整數(shù)k,m,n(k<m<n)成等差數(shù)列,試比較Tn•Tk和(Tm2的大小,并說(shuō)明理由;
(3)探究:命題p:“對(duì)?n,m∈N+,當(dāng)n>m時(shí),總有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常數(shù))”是命題t:“數(shù)列{an}是公比為q(q>0)的等比數(shù)列”的充要條件嗎?若是,請(qǐng)給出證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

由3人組成的一個(gè)代表隊(duì)參加某項(xiàng)知識(shí)競(jìng)賽.競(jìng)賽共有10道題,每題可由任一人回答,答對(duì)得10分,答錯(cuò)得0分.假設(shè)3人答題是相互獨(dú)立的,且回答問(wèn)題正確的概率分別為0.4、0.4、0.5,則此次競(jìng)賽該代表隊(duì)可望獲得
82
82
分.

查看答案和解析>>

設(shè)事件A發(fā)生的概率為P,若在A發(fā)生的條件下B發(fā)生的概率為P′,則由A產(chǎn)生B的概率為PP′,根據(jù)這一規(guī)律解答下題:一種擲硬幣走跳棋的游戲:棋盤上有第0,1,2,3,…,100,共101站,設(shè)棋子跳到第n站的概率為Pn,一枚棋子開(kāi)始在第0站(即P0=1),由棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若硬幣出現(xiàn)正面則棋子向前跳動(dòng)一站,出現(xiàn)反面則向前跳動(dòng)兩站,直到棋子跳到第99站(獲勝)或100站(失。⿻r(shí),游戲結(jié)束.已知硬幣出現(xiàn)正反面的概率都為
12

(1)求P1,P2,P3,并根據(jù)棋子跳到第n+1站的情況,試用Pn,Pn-1表示Pn+1
(2)設(shè)an=Pn-Pn-1(1≤n≤100),求證:數(shù)列{an}是等比數(shù)列,并求出{an}的通項(xiàng)公式;
(3)求玩該游戲獲勝的概率.

查看答案和解析>>


同步練習(xí)冊(cè)答案