(Ⅲ)將曲線向右平移2個單位得到曲線,設曲線的準線為.焦點為.過作直線交曲線于兩點.過點作平行于曲線的對稱軸的直線.若.試證明三點(為坐標原點)在同一條直線上. 查看更多

 

題目列表(包括答案和解析)

要得到余弦曲線,只需將正弦曲線( 。

查看答案和解析>>

要得到余弦曲線,只需將正弦曲線(  )
A.向右平移
π
2
個單位
B.向左平移
π
2
個單位
C.向右平移π個單位D.向左平移π個單位

查看答案和解析>>

保持正弦曲線上所有點的縱坐標不變,橫坐標縮短為原來的,再將圖像沿 軸向右平移 個單位,得到函數 的圖像.
(1)寫出的表達式,并計算.
(2)求出 上的值域.

查看答案和解析>>

保持正弦曲線上所有點的縱坐標不變,橫坐標縮短為原來的,再將圖像沿 軸向右平移 個單位,得到函數 的圖像.
(1)寫出的表達式,并計算.
(2)求出 上的值域.

查看答案和解析>>

平面直角坐標系中,將曲線數學公式(α為參數)上的每一點縱坐標不變,橫坐標變?yōu)樵瓉淼囊话,然后整個圖象向右平移1個單位,最后橫坐標不變,縱坐標變?yōu)樵瓉淼?倍得到曲線C1.以坐標原點為極點,x的非負半軸為極軸,建立的極坐標中的曲線C2的方程為ρ=4sinθ,求C1和C2公共弦的長度.

查看答案和解析>>

 

一、選擇題:

1.解析:B.由6ec8aac122bd4f6e6ec8aac122bd4f6e能夠推出6ec8aac122bd4f6e;反之,由6ec8aac122bd4f6e只能推出6ec8aac122bd4f6e6ec8aac122bd4f6e,而不能推出6ec8aac122bd4f6e6ec8aac122bd4f6e.故“6ec8aac122bd4f6e”是“6ec8aac122bd4f6e6ec8aac122bd4f6e”的必要不充分條件,故選B.

評析:有關充要條件的判定問題,概念性較強,進行判斷時,必須緊扣概念.一方面,要正確理解充要條件本身的概念,進行雙向推理,準確判斷;另一方面,還要注意根據具體問題所涉及到的數學概念來思考.本題中,弄清并集和交集概念中“或”與“且”的關系顯得很重要.

2.解析:B.∵△=6ec8aac122bd4f6e.要使函數6ec8aac122bd4f6e的一個零點在6ec8aac122bd4f6e內,必須滿足條件:6ec8aac122bd4f6e,即6ec8aac122bd4f6e,

6ec8aac122bd4f6e,∴實數k的取值范圍為(2,3).

3.解析:D.化簡復數6ec8aac122bd4f6e可得6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,

故選D.

4.解析:B 先作出直線A1B與平面BC1D1所成角,再通過解三角形求出其正切值.如圖,連結6ec8aac122bd4f6e6ec8aac122bd4f6e 于6ec8aac122bd4f6e,連結6ec8aac122bd4f6e.由6ec8aac122bd4f6e6ec8aac122bd4f6e,又6ec8aac122bd4f6e,得6ec8aac122bd4f6e,所以6ec8aac122bd4f6e就是直線A1B與平面BC1D1所成角.在直角6ec8aac122bd4f6e中,求得6ec8aac122bd4f6e,故選B.

評析:平面的斜線與平面所成的角,就是這條斜線與它在該平面上

6ec8aac122bd4f6e的射影所成的銳角,根據題目的條件作出斜線在該平面上的射影

是實現解題的關鍵,而作射影的關鍵則是作出平面的垂線,要注

意面面垂直的性質在作平面的垂線時的應用.

5.解析: A.特值法.取B=0,A=1,C=-1,則M(1,6ec8aac122bd4f6e),

N(1,-6ec8aac122bd4f6e), ∴6ec8aac122bd4f6e= x1x2+y1y2 =-2.故選A .

      6.解析  B.設點6ec8aac122bd4f6e是函數6ec8aac122bd4f6e上的任意一點,點6ec8aac122bd4f6e關于點6ec8aac122bd4f6e的對稱點為6ec8aac122bd4f6e,則6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e上,

6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,即6ec8aac122bd4f6e.故選B.

7.解析: C.圖象法.由6ec8aac122bd4f6e的圖象可得,6ec8aac122bd4f6e6ec8aac122bd4f6e上是增函數,在6ec8aac122bd4f6e上是減函數,又6ec8aac122bd4f6e是偶函數,∴6ec8aac122bd4f6e,

6ec8aac122bd4f6e,解得6ec8aac122bd4f6e.故選C.

8.解析:B,由6ec8aac122bd4f6e,得:6ec8aac122bd4f6e,即6ec8aac122bd4f6e

解之得6ec8aac122bd4f6e,由于6ec8aac122bd4f6e,故6ec8aac122bd4f6e;選B

9.解析: B.如果四塊均不同色,則有6ec8aac122bd4f6e種涂法;如果有且僅有兩塊同色,它們必是相對的兩塊,有6ec8aac122bd4f6e種涂法;如果兩組相對的兩塊分別同色,則有6ec8aac122bd4f6e種涂法.根據分類計數原理,得到涂色方法種數為6ec8aac122bd4f6e(種),故選B.

10.解析:選D.①②③易于判斷其真。6ec8aac122bd4f6e.

6ec8aac122bd4f6e,即曲線上任一點P(x,y)在單位圖6ec8aac122bd4f6e外,(點(±1,0)在圓上),

則S>π?12

  評析:f(x,y)=f(x,-y)6ec8aac122bd4f6e曲線f(x,y)=0,關于x軸對稱;

       f(x,y)=f(-x, y)6ec8aac122bd4f6e曲線f(x,y)=0,關于y軸對稱;

       f(x,y)=f(-x, -y)6ec8aac122bd4f6e曲線f(x,y)=0,關于原點對稱。

 

6ec8aac122bd4f6e11.解析:D,在EF上任意取一點M,直線6ec8aac122bd4f6e與M確定一個平面,

這個平面與CD有且僅有1個交點N, 當M取不同的位置就確

定不同的平面,從而與CD有不同的交點N,而直線MN與這

3條異面直線都有交點的.如右圖:

評析:本題主要考查立體幾何中空間直線相交問題,考查學生

的空間想象能力。

 

 

 

12.解析:C.P(X=8)=6ec8aac122bd4f6e,P(X=7)=6ec8aac122bd4f6e,

P(X=6)=6ec8aac122bd4f6e, 所以P(X≥6)=6ec8aac122bd4f6e,

即線路信息暢通的概率為6ec8aac122bd4f6e,故選C.

二、填空題:

13.解析:6ec8aac122bd4f6e.由6ec8aac122bd4f6e,得6ec8aac122bd4f6e,即6ec8aac122bd4f6e,又由6ec8aac122bd4f6e,得6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,

于是,6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e

14. 解析:6ec8aac122bd4f6e.如圖,6ec8aac122bd4f6e過點6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e在點6ec8aac122bd4f6e處取得最小值,6ec8aac122bd4f6e點在直線

6ec8aac122bd4f6e上,6ec8aac122bd4f6e,∴6ec8aac122bd4f6e

評析:簡單的線性規(guī)劃問題,其約束條件是平面上的一個

多邊形閉區(qū)域,或者是向某一方向無限延展的半閉區(qū)域,而目標函數一般在邊界的頂點處取得最值.解題時通常運用圖解法,根據題意畫出圖形,從圖形中尋求思路、獲得答案,體現了數形結合的思想方法.

15.解析:f(x)=x2+2x+1 .設f(x)=ax2+bx+c (a≠0),則△=b24ac=0,f′(x)=2ax+b=2x+2.

    ∴6ec8aac122bd4f6e,故 f(x)=x2+2x+1 .

16.解析:橢圓6ec8aac122bd4f6e與雙曲線6ec8aac122bd4f6e的焦距相等.由橢圓6ec8aac122bd4f6e與雙曲線6ec8aac122bd4f6e的焦距相等,分析橢圓和雙曲線的標準方程中參數之間的關系,運用類比推理的方法,不難得到推廣后的一個命題為:橢圓6ec8aac122bd4f6e與雙曲線6ec8aac122bd4f6e的焦距相等.

評析:推廣命題有多種方法,其中類比推理是一種常用方法.值得指出的是,本題的答案不唯一,例如,我們還可以得到推廣后的更具一般性的命題:橢圓6ec8aac122bd4f6e與雙曲線6ec8aac122bd4f6e 6ec8aac122bd4f6e的焦距相等.

三、解答題:

17.解析:(Ⅰ)6ec8aac122bd4f6e,在6ec8aac122bd4f6e中,由余弦定理,

6ec8aac122bd4f6e,

6ec8aac122bd4f6e,                      6ec8aac122bd4f6e(2分)

6ec8aac122bd4f6e,6ec8aac122bd4f6e,                        

6ec8aac122bd4f6e得,6ec8aac122bd4f6e,

6ec8aac122bd4f6e,從而6ec8aac122bd4f6e                  6ec8aac122bd4f6e(4分)

由題意可知6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,                                 6ec8aac122bd4f6e(5分)

又∵△BCD是6ec8aac122bd4f6e,∴6ec8aac122bd4f6e6ec8aac122bd4f6e時,則6ec8aac122bd4f6e,由6ec8aac122bd4f6e,

6ec8aac122bd4f6e;

6ec8aac122bd4f6e6ec8aac122bd4f6e時,則6ec8aac122bd4f6e,由6ec8aac122bd4f6e,∴6ec8aac122bd4f6e;

綜上,6ec8aac122bd4f6e.                                            6ec8aac122bd4f6e(7分)

(Ⅱ)由(1)知6ec8aac122bd4f6e,∴向量6ec8aac122bd4f6e6ec8aac122bd4f6e的夾角為6ec8aac122bd4f6e,     6ec8aac122bd4f6e(9分)

6ec8aac122bd4f6e6ec8aac122bd4f6e時,6ec8aac122bd4f6e,6ec8aac122bd4f6e,

6ec8aac122bd4f6e.                   6ec8aac122bd4f6e(10分)

6ec8aac122bd4f6e6ec8aac122bd4f6e時,6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e.                    6ec8aac122bd4f6e(12分)

評析:本題考查平面向量和解三角形的基礎知識,考查分類討論的思想方法.求解時容易發(fā)生的錯誤是:(1)將條件“△BCD是直角三形”當作“△BCD是以角6ec8aac122bd4f6e是直角三形”來解,忽略對6ec8aac122bd4f6e為直角的情況的討論;(2)在計算6ec8aac122bd4f6e時,將6ec8aac122bd4f6e當作向量6ec8aac122bd4f6e6ec8aac122bd4f6e的夾角,忽略了確定兩個向量的夾角時必須將它們的起點移到一起.暴露出思維的不嚴謹和概念理解的缺陷,在復習中要引起重視,加強訓練.

18.解析: (Ⅰ)做了三次實驗,至少兩次實驗成功的情形有兩種:

    (1)恰有兩次成功,其概率為6ec8aac122bd4f6e;               6ec8aac122bd4f6e(2分)

    (2)三次都成功,其概率為6ec8aac122bd4f6e.                       6ec8aac122bd4f6e(4分)

    故得所求之概率為6ec8aac122bd4f6e.   6ec8aac122bd4f6e(6分)

    (Ⅱ)在第4次成功之前,共做了6次試驗,其中三次成功、三次失敗,且恰有兩次連續(xù)失敗,其各種可能情況的種數為6ec8aac122bd4f6e.                   6ec8aac122bd4f6e(10分)

  因此,所求之概率為6ec8aac122bd4f6e.                          6ec8aac122bd4f6e(12分)

19.解析:(Ⅰ)∵SB=SC,AB=AC,M為BC中點,

∴SM⊥BC,AM⊥BC.        6ec8aac122bd4f6e(2分)

由棱錐的側面積等于底面積的2倍,即

6ec8aac122bd4f6e

6ec8aac122bd4f6e.                6ec8aac122bd4f6e(4分)

   (Ⅱ)作正三棱錐的高SG,則G為正三角形ABC的中心,G在AM上,6ec8aac122bd4f6e

∵SM⊥BC,AM⊥BC,

∴∠SMA是二面角S―BC―A的平面角.6ec8aac122bd4f6e(6分)

在Rt△SGM中,∵6ec8aac122bd4f6e∴∠SMA=∠SMG=60°,

即二面角S―BC―A的大小為60°.  6ec8aac122bd4f6e(8分)

(Ⅲ)∵△ABC的邊長是3,

6ec8aac122bd4f6e,  6ec8aac122bd4f6e(10分)

6ec8aac122bd4f6e.             6ec8aac122bd4f6e(12分)

評析計算二面角大小,既可以根據二面角的定義,通過作出二面角的平面角,再解三角形求角,也可以運用向量方法,轉化為計算兩個平面的法向量的夾角.做題時要考慮前后聯系,注意選擇簡便的方法.

 

 

20.解析:(Ⅰ)證明:假設存在一個實數,使{an}是等比數列,則有6ec8aac122bd4f6e,即

6ec8aac122bd4f6e2=6ec8aac122bd4f6e26ec8aac122bd4f6e矛盾.

所以{an}不是等比數列.                        6ec8aac122bd4f6e(3分)

   (Ⅱ)證明:∵6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e由上式知6ec8aac122bd4f6e

6ec8aac122bd4f6e故當6ec8aac122bd4f6e數列{bn}是以6ec8aac122bd4f6e為首項,6ec8aac122bd4f6e為公比的等比數列.

                                             6ec8aac122bd4f6e(7分)

   (Ⅲ)當6ec8aac122bd4f6e由(Ⅱ)得6ec8aac122bd4f6e于是

6ec8aac122bd4f6e  當6ec8aac122bd4f6e時,6ec8aac122bd4f6e,從而6ec8aac122bd4f6e上式仍成立.

要使對任意正整數n , 都有6ec8aac122bd4f6e

6ec8aac122bd4f6e       6ec8aac122bd4f6e(9分)

6ec8aac122bd4f6e

當n為正奇數時,6ec8aac122bd4f6e當n為正偶數時,6ec8aac122bd4f6e

6ec8aac122bd4f6e  于是可得6ec8aac122bd4f6e

綜上所述,存在實數6ec8aac122bd4f6e,使得對任意正整數6ec8aac122bd4f6e,都有6ec8aac122bd4f6e

6ec8aac122bd4f6e的取值范圍為6ec8aac122bd4f6e                         6ec8aac122bd4f6e(12分)

評析:(1)求解等差數列與等比數列的有關問題,定義、公式和性質是主要工具,要注意抓住基本量───首項和公差(公比),方程思想、化歸思想和運算能力是考查的重點;(2)正面求解,直接證明難以突破時,可以考慮從反面入手,運用正難則反的思想來處理,反證法就是從反面入手的一種重要的推理方法,一般地,以否定的形式出現的數學命題,我們常用反證法來實現證明。

21.解析:(Ⅰ)6ec8aac122bd4f6e,……(1分)

∵函數6ec8aac122bd4f6e6ec8aac122bd4f6e上單調遞增,在6ec8aac122bd4f6e上單調遞減,

6ec8aac122bd4f6e6ec8aac122bd4f6e處取得極大值,有6ec8aac122bd4f6e,         6ec8aac122bd4f6e(3分)

6ec8aac122bd4f6e,這就是所求的6ec8aac122bd4f6e之間的關系式.     6ec8aac122bd4f6e(4分)

   (Ⅱ)當6ec8aac122bd4f6e6ec8aac122bd4f6e處取得極小值,有6ec8aac122bd4f6e,即6ec8aac122bd4f6e,          ① 

又由(Ⅰ)有:6ec8aac122bd4f6e                                               ②聯立①和②,解得6ec8aac122bd4f6e.                   6ec8aac122bd4f6e(5分)

此時,6ec8aac122bd4f6e,在6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e處確可取得極小值,故6ec8aac122bd4f6e,   6ec8aac122bd4f6e(7分)

從而6ec8aac122bd4f6e.                      6ec8aac122bd4f6e(8分)

   (Ⅲ)由(Ⅰ)得:6ec8aac122bd4f6e,

6ec8aac122bd4f6e,

它在6ec8aac122bd4f6e上為減函數,在6ec8aac122bd4f6e為增函數.  6ec8aac122bd4f6e(10分)

若存在實數6ec8aac122bd4f6e,使6ec8aac122bd4f6e6ec8aac122bd4f6e上為單調函數,則有6ec8aac122bd4f6e,得6ec8aac122bd4f6e.又因為6ec8aac122bd4f6e,有6ec8aac122bd4f6e,這與6ec8aac122bd4f6e矛盾.

所以滿足題意的實數6ec8aac122bd4f6e不存在.      6ec8aac122bd4f6e(12分)

評析: 導數是研究函數性質的一個有力工具,運用導數求函數的單調區(qū)間和極值,可轉化為解不等式6ec8aac122bd4f6e和方程6ec8aac122bd4f6e,顯得非常簡捷且易于操作.值得注意的是:6ec8aac122bd4f6e6ec8aac122bd4f6e取得極值的必要條件,因此,在(Ⅱ)中,由6ec8aac122bd4f6e求出6ec8aac122bd4f6e,必須檢驗.

22.解析:(Ⅰ)由題意可得6ec8aac122bd4f6e ,       6ec8aac122bd4f6e(2分)

6ec8aac122bd4f6e,得6ec8aac122bd4f6e,∴6ec8aac122bd4f6e6ec8aac122bd4f6e(4分)

∴橢圓6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e.                       6ec8aac122bd4f6e(4分)

   (Ⅱ)由(Ⅰ)可得橢圓6ec8aac122bd4f6e的左焦點為6ec8aac122bd4f6e,左準線為6ec8aac122bd4f6e,      

連結6ec8aac122bd4f6e,則6ec8aac122bd4f6e,設6ec8aac122bd4f6e,則6ec8aac122bd4f6e,

6ec8aac122bd4f6e,                           6ec8aac122bd4f6e(6分)

化簡得6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e.                     6ec8aac122bd4f6e(8分)

   (Ⅲ)將曲線6ec8aac122bd4f6e向右平移2個單位,得曲線6ec8aac122bd4f6e的方程為: 6ec8aac122bd4f6e,其焦點為6ec8aac122bd4f6e,準線為6ec8aac122bd4f6e,對稱軸為6ec8aac122bd4f6e軸.     6ec8aac122bd4f6e(10分)

設直線6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e,代入y2=4x,得y2-4ty-4=0.

由題意,可設6ec8aac122bd4f6e(6ec8aac122bd4f6e),6ec8aac122bd4f6e(6ec8aac122bd4f6e),則y1y2=-4,

且有6ec8aac122bd4f6e                                6ec8aac122bd4f6e(12分)

6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e

6ec8aac122bd4f6e三點共線.                 6ec8aac122bd4f6e(14分)

評析:證明三點共線的方法很多,這里運用向量共線定理來證,體現了平面向量與解析幾何知識的交匯和平面向量知識在解析幾何中的應用.近幾年的高考突出了在知識網絡的交匯點處設計命題的要求,平面向量與解析幾何知識的綜合考查成為一個不衰的熱點,復習中要引起重視.

 

 

 

 


同步練習冊答案