在銳角△ABC中,∠A,∠B,∠C的對邊分別是a,b,c.如圖所示,過C作CD⊥AB,垂足為點D,則cosA=
,即AD=bcosA,所以BD=c-AD=c-bcosA.
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2,b
2-b
2cos
2A=a
2-(c-bcosA)
2,
整理得a
2=b
2+c
2-2bccosA. ①
同理可得b
2=a
2+c
2-2accosB. ②
C
2=a
2+b
2-2abcosC. ③
這個結(jié)論就是著名的余弦定理.在以上三個等式中有六個元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個元素,可求出其余的另外三個元素.
(1)在銳角△ABC中,已知∠A=60°,b=5,c=7,試?yán)芒伲,③求出a,∠B,∠C,的數(shù)值;
(2)已知在銳角△ABC中,三邊a,b,c分別是7,8,9,求出∠A,∠B,∠C的度數(shù).(保留整數(shù))