26. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線過點(diǎn)、點(diǎn),且與軸的另一交點(diǎn)為,其中>0,又點(diǎn)是拋物線的對(duì)稱軸上一動(dòng)點(diǎn).

(1)求點(diǎn)的坐標(biāo),并在圖1中的上找一點(diǎn),使到點(diǎn)與點(diǎn)的距離之和最。

(2)若△周長(zhǎng)的最小值為,求拋物線的解析式及頂點(diǎn)的坐標(biāo);

(3)如圖2,在線段上有一動(dòng)點(diǎn)以每秒2個(gè)單位的速度從點(diǎn)向點(diǎn)移動(dòng)(不與端點(diǎn)、重合),過點(diǎn)軸于點(diǎn),設(shè)移動(dòng)的時(shí)間為秒,試把△的面積表示成時(shí)間的函數(shù),當(dāng)為何值時(shí),有最大值,并求出最大值.

 

查看答案和解析>>

(本小題滿分12分)

如圖,AB、BC、CD分別與⊙O切于E、F、G,且AB∥CD.連接OB、OC,延長(zhǎng)CO交⊙O于點(diǎn)M,過點(diǎn)M作MN ∥OB交CD于N.

1.⑴求證:MN是⊙O的切線;

2.⑵當(dāng)0B=6cm,OC=8cm時(shí),求⊙O的半徑及圖中陰影部分的面積.

 

查看答案和解析>>

(本小題滿分12分)

甲、乙、丙三個(gè)人準(zhǔn)備打羽毛球,他們約定用“拋硬幣”的方式來確定哪兩個(gè)人先上場(chǎng),三人手中各持有一枚質(zhì)地均勻的硬幣,同時(shí)將手中硬幣拋落到水平地面為一個(gè)回合.落地后,三枚硬幣中,恰有兩枚正面向上或反面向上的這兩枚硬幣持有人先上場(chǎng);若三枚硬幣均為正面向上或反面向上,屬于不能確定.

1.(1)請(qǐng)你畫出表示“拋硬幣”一個(gè)回合所有可能出現(xiàn)的結(jié)果的樹狀圖;

2.(2)求一個(gè)回合能確定兩人先上場(chǎng)的概率.

 

查看答案和解析>>

(本小題滿分12分)

如圖,在Rt△OAB中,∠OAB=90°,且點(diǎn)B的坐標(biāo)為(4,2).

1.⑴ 畫出關(guān)于點(diǎn)O成中心對(duì)稱的,并寫出點(diǎn)B1的坐標(biāo);

2.⑵ 求出以點(diǎn)B1為頂點(diǎn),并經(jīng)過點(diǎn)B的二次函數(shù)關(guān)系式.

 

查看答案和解析>>

 (本小題滿分12分)

如圖,RtΔABC中,∠ACB=90°,AC=4,BA=5,點(diǎn)PAC上的動(dòng)點(diǎn)(P不與A、C重合)PQAB,垂足為Q.設(shè)PC=x,PQ= y

1.⑴求yx的函數(shù)關(guān)系式;

2.⑵試確定此RtΔABC內(nèi)切圓I的半徑,并探求x為何值時(shí),直線PQ與這個(gè)內(nèi)切圓I相切?

3.⑶若0<x<1,試判斷以P為圓心,半徑為y的圓與⊙I能否相內(nèi)切,若能求出相應(yīng)的x的值,若不能,請(qǐng)說明理由.

 

查看答案和解析>>

一.1.C;  2.C; 3.C;  4.B;  5.D;  6.B;  7.A; 8.B;  9.A;  10.C。

二.11.x≥2;   12.1;   13.25°;  14.145; 。保担保;  

16.180;   17.①,③;  。保福

三.19解:原式?????????????????????????????????????????????????????????????????????????? 2分

???????????????????????????????????????????????????????????????????????????????????????????? 5分

當(dāng)時(shí),原式.??????????????????????????????????????????????????????? 7分.

20.解:(1)(名),

本次調(diào)查了90名學(xué)生.?????????????????????????????????????????????????????????????????????????????????????? (2分)

補(bǔ)全的條形統(tǒng)計(jì)圖如下:

    1. 文本框: 知道文本框: 記不清文本框: 不知道(名),

      估計(jì)這所學(xué)校有1500名學(xué)生知道母親的生日.??????????????????????????????????????????????????? (6分)

      (3)略(語言表述積極進(jìn)取,健康向上即可得分).?????????????????????????????????????????????? (7分)

      21.(本題滿分8分)

      解:(1)如圖,由題意得,∠EAD=45°,∠FBD=30°.

      ∴ ∠EAC=∠EAD+∠DAC =45°+15°=60°.

      ∵  AE∥BF∥CD,

      ∴  ∠FBC=∠EAC=60°.

      ∴ ∠DBC=30°. ???????????????????????????????????????? 2分

      又∵ ∠DBC=∠DAB+∠ADB,

        ∴ ∠ADB=15°.

      ∴ ∠DAB=∠ADB. ∴  BD=AB=2.

        即B,D之間的距離為2km.???????????????????????????????????????????????????????????????????????????????? 4分

      (2)過B作BO⊥DC,交其延長(zhǎng)線于點(diǎn)O,

        在Rt△DBO中,BD=2,∠DBO=60°.

        ∴ DO=2×sin60°=2×,BO=2×cos60°=1.??????????????????????????????????????????????????? 6分

        在Rt△CBO中,∠CBO=30°,CO=BOtan30°=

        ∴ CD=DO-CO=(km).

        即C,D之間的距離為km. ????????????????????????????????????????????????????????????????????????? 8分

       

      22.解:(1)

      (2)290,甲,20.????????????????????????????????????????????????????????????????????????????????? 6分(每空1分)

      (3)在5月17日,甲廠生產(chǎn)帳篷50頂,乙廠生產(chǎn)帳篷30頂.???????????????????????????????????? 6分

      設(shè)乙廠每天生產(chǎn)帳篷的數(shù)量提高了,則?????????????????????????????????????? 7分

      答:乙廠每天生產(chǎn)帳篷的數(shù)量提高了.?????????????????????????????????????????????????????????????????? 8分

       

       

      23.解:(1)① 等邊三角形;②重疊三角形的面積為.?????????????????????????? 5分

      (2)用含的代數(shù)式表示重疊三角形的面積為;?????????????????????????? 7分

      的取值范圍為..................................................8分

      (3)能;t=2。.............................................................10分.

      24.本小題滿分10分.

      (Ⅰ)證明  將△沿直線對(duì)折,得△,連,

      則△≌△.    ????????????????????????????????????????????????????????????????????????????????????????? 1分

      ,,

      又由,得 .  ????????????????????????????????????????? 2分

      ,

      ,

      . ??????????????????????????????????????????????????????????????????????????????????????????????????? 3分

      ,

      ∴△≌△.    ???????????????????????????????????????????????????????????????????????????????????????????? 4分

      ,

      .???????????????????????????????????????????????????????????? 5分

      ∴在Rt△中,由勾股定理,

      .即. ??????????????????????????????????????????????????????? 6分

      (Ⅱ)關(guān)系式仍然成立.  ???????????????????????????????????????????????????????????? 7分

      證明  將△沿直線對(duì)折,得△,連

      則△≌△. ???????????????????????????????????????????????????? 8分

      ,,

      ,

      又由,得

      .   ??????????????????????????????????????????????????????????????????????????????????????????????? 8分

      ,

      ∴△≌△

      ,,,

      .  

      ∴在Rt△中,由勾股定理,

      .即.????????????????????????????????????????????????????????? 9分

      (3).能;在直線AB上取點(diǎn)M,N使∠MCN=45°......................10分

      25.(本題滿分12分)

      解:(1)設(shè)正方形的邊長(zhǎng)為cm,則

      .?????????????????????????????????????????????????????????????????????????????????????????????? 1分

      解得(不合題意,舍去),

      剪去的正方形的邊長(zhǎng)為1cm.???????????????????????????????????????????????????????????????????????????????????? 3分

      (注:通過觀察、驗(yàn)證直接寫出正確結(jié)果給3分)

      (2)有側(cè)面積最大的情況.

      設(shè)正方形的邊長(zhǎng)為cm,盒子的側(cè)面積為cm2

      的函數(shù)關(guān)系式為:

      .????????????????????????????????????????????????????????????????????????????????????????????????????? 5分

      改寫為

      當(dāng)時(shí),

      即當(dāng)剪去的正方形的邊長(zhǎng)為2.25cm時(shí),長(zhǎng)方體盒子的側(cè)面積最大為40.5cm2.?????????????? 7分

      (3)有側(cè)面積最大的情況.

      設(shè)正方形的邊長(zhǎng)為cm,盒子的側(cè)面積為cm2

      若按圖1所示的方法剪折,則的函數(shù)關(guān)系式為:

      當(dāng)時(shí),.??????????????????????????????????? 9分

      若按圖2所示的方法剪折,則的函數(shù)關(guān)系式為:

      當(dāng)時(shí),.??????????????????????????????????????????????????????????????????????????????????????? 11分

      比較以上兩種剪折方法可以看出,按圖2所示的方法剪折得到的盒子側(cè)面積最大,即當(dāng)剪去的正方形的邊長(zhǎng)為cm時(shí),折成的有蓋長(zhǎng)方體盒子的側(cè)面積最大,最大面積為cm2

      說明:解答題各小題只給了一種解答及評(píng)分說明,其他解法只要步驟合理,解答正確,均應(yīng)給出相應(yīng)分?jǐn)?shù).

      26.(本小題滿分12分)

      解:(1)在Rt△ABC中,,

      由題意知:AP = 5-t,AQ = 2t,

      若PQ∥BC,則△APQ ∽△ABC,

      ,

      .                                 ??????????????????????????????????????????????????????? 3′

      (2)過點(diǎn)P作PH⊥AC于H.

      ∵△APH ∽△ABC,

      ,

      .       ??????????????????????????????????????????? 6′

      (3)若PQ把△ABC周長(zhǎng)平分,

      則AP+AQ=BP+BC+CQ.

      ,   

      解得:

      若PQ把△ABC面積平分,

      ,  即-+3t=3.

      ∵ t=1代入上面方程不成立,

      ∴不存在這一時(shí)刻t,使線段PQ把Rt△ACB的周長(zhǎng)和面積同時(shí)平分.???????????????? 9′

      (4)過點(diǎn)P作PM⊥AC于M,PN⊥BC于N,

      若四邊形PQP ′ C是菱形,那么PQ=PC.

      ∵PM⊥AC于M,

      ∴QM=CM.

      ∵PN⊥BC于N,易知△PBN∽△ABC.

      ,  ∴,

      ,

      ,

      ,

      解得:

      ∴當(dāng)時(shí),四邊形PQP ′ C 是菱形.     

      此時(shí), ,

      在Rt△PMC中,,

      ∴菱形PQP ′ C邊長(zhǎng)為.?????????????????????????????????????????????????????????????????????????? 12′

       

       

       

       


      同步練習(xí)冊(cè)答案