(2)實驗探究:設的長為.若重疊三角形存在.試用含的代數(shù)式表示重疊三角形的面積.并寫出的取值范圍(寫出探究過程.備用圖供實驗.探究使用). 查看更多

 

題目列表(包括答案和解析)

已知等邊三角形紙片的邊長為邊上的點,過點于點于點,過點于點,把三角形紙片分別沿按圖1所示方式折疊,點分別落在點,,處.若點,在矩形內(nèi)或其邊上,且互不重合,此時我們稱(即圖中陰影部分)為“重疊三角形”.

(1)若把三角形紙片放在等邊三角形網(wǎng)格中(圖中每個小三角形都是邊長為1的等邊三角形),點恰好落在網(wǎng)格圖中的格點上.如圖2所示,請直接寫出此時重疊三角形的面積;

(2)實驗探究:設的長為,若重疊三角形存在.試用含的代數(shù)式表示重疊三角形的面積,并寫出的取值范圍(直接寫出結(jié)果,備用圖供實驗,探究使用).

查看答案和解析>>

已知等邊三角形紙片ABC的邊長為8,D為AB邊上的點,過點D作DG∥BC交AC于點G.DE⊥BC于點E,過點G作GF⊥BC于點F,把三角形紙片ABC分別沿DG,DE,GF按圖1所示方式折疊,點A,B,C分別落在點,,處.若點,在矩形DEFG內(nèi)或其邊上,且互不重合,此時我們稱△(即圖中陰影部分)為“重疊三角形”.

(1)若把三角形紙片ABC放在等邊三角形網(wǎng)格中(圖中每個小三角形都是邊長為1的等邊三角形),點A,B,C,D恰好落在網(wǎng)格圖中的格點上.如圖2所示,請直接寫出此時重疊三角形的面積;

(2)實驗探究:設AD的長為m,若重疊三角形存在.試用含m的代數(shù)式表示重疊三角形的面積,并寫出m的取值范圍(直接寫出結(jié)果,備用圖供實驗,探究使用).

解:(1)重疊三角形的面積為________;

(2)用含m的代數(shù)式表示重疊三角形的面積為________;m的取值范圍為________

查看答案和解析>>

已知等邊三角形紙片ABC的邊長為8,D為AB邊上的點,過點D作DG∥BC交AC于點G。DE⊥BC于點E,過點G作GF⊥BC于點F,把三角形紙片ABC分別沿DG,DE,GF按圖1所示方式折疊,點A、B、C分別落在點A′,B′,C′處。若點A′,B′,C′在矩形DEFG內(nèi)或其邊上,且互不重合,此時我們稱△A′B′C′(即圖中陰影部分)為“重疊三角形”。
 
(1)若把三角形紙片ABC放在等邊三角形網(wǎng)格中(圖中每個小三角形都是邊長為1的等邊三角形),點A,B,C,D恰好落在網(wǎng)格圖中的格點上。如圖2所示,請直接寫出此時重疊三角形A′B′C′的面積;
(2) 實驗探究:設AD的長為m,若重疊三角形A′B′C′存在。試用含M的代數(shù)式表示重疊三角形A′B′C′的面積,并寫出m的取值范圍(直接寫出結(jié)果);
解:(1)重疊三角形A′B′C′的面積為_______________;
(2)用含m的代數(shù)式表示重疊三角形A′B′C′的面積為_______________;m的取值范圍為__________。

查看答案和解析>>

已知等邊三角形紙片ABC的邊長為8,D為AB邊上的點,過點D作DG∥BC交AC于點G.DE⊥BC于點E,過點G作GF⊥BC于點F,把三角形紙片ABC分別沿DG,DE,GF按圖1所示方式折疊,點A,B,C分別落在點A′,B′,C′處.若點A′,B′,C′在矩形DEFG內(nèi)或其邊上,且互不重合,此時我們稱△A′B′C′(即圖中陰影部分)為“重疊三角形”.
(1)若把三角形紙片ABC放在等邊三角形網(wǎng)格中(圖中每個小三角形都是邊長為1的等邊三角形),點A,B,C,D恰好落在網(wǎng)格圖中的格點上.如圖2所示,請直接寫出此時重疊三角形A′B′C′的面積;
(2)實驗探究:設AD的長為m,若重疊三角形A′B′C′存在.試用含m的代數(shù)式表示重疊精英家教網(wǎng)三角形A′B′C′的面積,并寫出m的取值范圍.(直接寫出結(jié)果)

查看答案和解析>>

已知菱形紙片ABCD的邊長為,∠A=60°,E為邊上的點,過點E作EF∥BD交AD于點F.將菱形先沿EF按圖1所示方式折疊,點A落在點處,過點作GH∥BD分別交線段BC、DC于點G、H,再將菱形沿GH按圖1所示方式折疊,點C落在點處,H分別交于點M、N.若點在△EF的內(nèi)部或邊上,此時我們稱四邊形(即圖中陰影部分)為“重疊四邊形”.

 

1.若把菱形紙片ABCD放在菱形網(wǎng)格中(圖中每個小三角形都是邊長為1的等邊三角形),點A、B、C、D、E恰好落在網(wǎng)格圖中的格點上.如圖2所示,請直接寫出此時重疊四邊形的面積;

2.實驗探究:設AE的長為,若重疊四邊形存在.試用含的代數(shù)式表示重疊四邊形的面積,并寫出的取值范圍(直接寫出結(jié)果,備用圖供實驗,探究使用).

 

查看答案和解析>>

一.1.C;  2.C; 3.C;  4.B;  5.D;  6.B;  7.A; 8.B;  9.A;  10.C。

二.11.x≥2;   12.1;   13.25°;  14.145; 。保担保;  

16.180;   17.①,③;  。保福

三.19解:原式?????????????????????????????????????????????????????????????????????????? 2分

???????????????????????????????????????????????????????????????????????????????????????????? 5分

時,原式.??????????????????????????????????????????????????????? 7分.

20.解:(1)(名),

本次調(diào)查了90名學生.?????????????????????????????????????????????????????????????????????????????????????? (2分)

補全的條形統(tǒng)計圖如下:

    <s id="ottu3"><source id="ottu3"></source></s>
      文本框: 知道文本框: 記不清文本框: 不知道(名),

      估計這所學校有1500名學生知道母親的生日.??????????????????????????????????????????????????? (6分)

      (3)略(語言表述積極進取,健康向上即可得分).?????????????????????????????????????????????? (7分)

      21.(本題滿分8分)

      解:(1)如圖,由題意得,∠EAD=45°,∠FBD=30°.

      ∴ ∠EAC=∠EAD+∠DAC =45°+15°=60°.

      ∵  AE∥BF∥CD,

      ∴  ∠FBC=∠EAC=60°.

      ∴ ∠DBC=30°. ???????????????????????????????????????? 2分

      又∵ ∠DBC=∠DAB+∠ADB,

        ∴ ∠ADB=15°.

      ∴ ∠DAB=∠ADB. ∴  BD=AB=2.

        即B,D之間的距離為2km.???????????????????????????????????????????????????????????????????????????????? 4分

      (2)過B作BO⊥DC,交其延長線于點O,

        在Rt△DBO中,BD=2,∠DBO=60°.

        ∴ DO=2×sin60°=2×,BO=2×cos60°=1.??????????????????????????????????????????????????? 6分

        在Rt△CBO中,∠CBO=30°,CO=BOtan30°=,

        ∴ CD=DO-CO=(km).

        即C,D之間的距離為km. ????????????????????????????????????????????????????????????????????????? 8分

       

      22.解:(1)

      (2)290,甲,20.????????????????????????????????????????????????????????????????????????????????? 6分(每空1分)

      (3)在5月17日,甲廠生產(chǎn)帳篷50頂,乙廠生產(chǎn)帳篷30頂.???????????????????????????????????? 6分

      設乙廠每天生產(chǎn)帳篷的數(shù)量提高了,則?????????????????????????????????????? 7分

      答:乙廠每天生產(chǎn)帳篷的數(shù)量提高了.?????????????????????????????????????????????????????????????????? 8分

       

       

      23.解:(1)① 等邊三角形;②重疊三角形的面積為.?????????????????????????? 5分

      (2)用含的代數(shù)式表示重疊三角形的面積為;?????????????????????????? 7分

      的取值范圍為..................................................8分

      (3)能;t=2。.............................................................10分.

      24.本小題滿分10分.

      (Ⅰ)證明  將△沿直線對折,得△,連

      則△≌△.    ????????????????????????????????????????????????????????????????????????????????????????? 1分

      ,,

      又由,得 .  ????????????????????????????????????????? 2分

      ,

      ,

      . ??????????????????????????????????????????????????????????????????????????????????????????????????? 3分

      ,

      ∴△≌△.    ???????????????????????????????????????????????????????????????????????????????????????????? 4分

      ,

      .???????????????????????????????????????????????????????????? 5分

      ∴在Rt△中,由勾股定理,

      .即. ??????????????????????????????????????????????????????? 6分

      (Ⅱ)關系式仍然成立.  ???????????????????????????????????????????????????????????? 7分

      證明  將△沿直線對折,得△,連,

      則△≌△. ???????????????????????????????????????????????????? 8分

      ,,

      又由,得

      .   ??????????????????????????????????????????????????????????????????????????????????????????????? 8分

      ,

      ∴△≌△

      ,,

      .  

      ∴在Rt△中,由勾股定理,

      .即.????????????????????????????????????????????????????????? 9分

      (3).能;在直線AB上取點M,N使∠MCN=45°......................10分

      25.(本題滿分12分)

      解:(1)設正方形的邊長為cm,則

      .?????????????????????????????????????????????????????????????????????????????????????????????? 1分

      解得(不合題意,舍去),

      剪去的正方形的邊長為1cm.???????????????????????????????????????????????????????????????????????????????????? 3分

      (注:通過觀察、驗證直接寫出正確結(jié)果給3分)

      (2)有側(cè)面積最大的情況.

      設正方形的邊長為cm,盒子的側(cè)面積為cm2,

      的函數(shù)關系式為:

      .????????????????????????????????????????????????????????????????????????????????????????????????????? 5分

      改寫為

      時,

      即當剪去的正方形的邊長為2.25cm時,長方體盒子的側(cè)面積最大為40.5cm2.?????????????? 7分

      (3)有側(cè)面積最大的情況.

      設正方形的邊長為cm,盒子的側(cè)面積為cm2

      若按圖1所示的方法剪折,則的函數(shù)關系式為:

      時,.??????????????????????????????????? 9分

      若按圖2所示的方法剪折,則的函數(shù)關系式為:

      時,.??????????????????????????????????????????????????????????????????????????????????????? 11分

      比較以上兩種剪折方法可以看出,按圖2所示的方法剪折得到的盒子側(cè)面積最大,即當剪去的正方形的邊長為cm時,折成的有蓋長方體盒子的側(cè)面積最大,最大面積為cm2

      說明:解答題各小題只給了一種解答及評分說明,其他解法只要步驟合理,解答正確,均應給出相應分數(shù).

      26.(本小題滿分12分)

      解:(1)在Rt△ABC中,,

      由題意知:AP = 5-t,AQ = 2t,

      若PQ∥BC,則△APQ ∽△ABC,

      ,

      ,

      .                                 ??????????????????????????????????????????????????????? 3′

      (2)過點P作PH⊥AC于H.

      ∵△APH ∽△ABC,

      ,

      ,

      .       ??????????????????????????????????????????? 6′

      (3)若PQ把△ABC周長平分,

      則AP+AQ=BP+BC+CQ.

      ,   

      解得:

      若PQ把△ABC面積平分,

      ,  即-+3t=3.

      ∵ t=1代入上面方程不成立,

      ∴不存在這一時刻t,使線段PQ把Rt△ACB的周長和面積同時平分.???????????????? 9′

      (4)過點P作PM⊥AC于M,PN⊥BC于N,

      若四邊形PQP ′ C是菱形,那么PQ=PC.

      ∵PM⊥AC于M,

      ∴QM=CM.

      ∵PN⊥BC于N,易知△PBN∽△ABC.

      ,  ∴

      ,

      ,

      解得:

      ∴當時,四邊形PQP ′ C 是菱形.     

      此時, 

      在Rt△PMC中,

      ∴菱形PQP ′ C邊長為.?????????????????????????????????????????????????????????????????????????? 12′

       

       

       

       


      同步練習冊答案