題目列表(包括答案和解析)
在前面的學(xué)習(xí)中,我們通過對同一面積的不同表達(dá)和比較,根據(jù)圖①和圖②發(fā)現(xiàn)并驗(yàn)證了平方差公式和完全平方公式
這種利用面積關(guān)系解決問題的方法,使抽象的數(shù)量關(guān)系因集合直觀而形象化。
【研究速算】
提出問題:47×43,56×54,79×71,……是一些十位數(shù)字相同,且個(gè)位數(shù)字之和是10的兩個(gè)兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個(gè)正數(shù)的乘積,以47×43為例:
(1)畫長為47,寬為43的矩形,如圖③,將這個(gè)47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形的上面。
(2)分析:原矩形面積可以有兩種不同的表達(dá)方式,47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個(gè)位數(shù)字3與7的積,構(gòu)成運(yùn)算結(jié)果。
歸納提煉:
兩個(gè)十位數(shù)字相同,并且個(gè)位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述) .
【研究方程】
提出問題:怎么圖解一元二次方程
幾何建模:
(1)變形:
(2)畫四個(gè)長為,寬為的矩形,構(gòu)造圖④
(3)分析:圖中的大正方形面積可以有兩種不同的表達(dá)方式,或四個(gè)長,寬的矩形之和,加上中間邊長為2的小正方形面積
即:
∵
∴
∴
∵
∴
歸納提煉:求關(guān)于的一元二次方程的解
要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標(biāo)注相關(guān)線段的長)
【研究不等關(guān)系】
提出問題:怎么運(yùn)用矩形面積表示與的大小關(guān)系(其中)?
幾何建模:
(1)畫長,寬的矩形,按圖⑤方式分割
(2)變形:
(3)分析:圖⑤中大矩形的面積可以表示為;陰影部分面積可以表示為,
畫點(diǎn)部分的面積可表示為,由圖形的部分與整體的關(guān)系可知:>,即
>
歸納提煉:
當(dāng),時(shí),表示與的大小關(guān)系
根據(jù)題意,設(shè),,要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標(biāo)注相關(guān)線段的長)
1 |
2 |
1 |
2 |
7 |
8 |
7 |
8 |
一 選擇題(共20分,每小題2分)
1. B 2 . B 3. C 4 .A 5 C 6 . C 7. C 8. A 9 . B 10. D
.
二,填空題。(共24分,每小題3分)
11 . 12 . 13 . 14 . 15. 16 . 17 . 18 ..
三、
19解:
當(dāng)時(shí),原式=()
20(1)如圖
(2)優(yōu)等人數(shù)為
良等人數(shù)為
(3)優(yōu)、良等級的概率分別是
(4)該校數(shù)學(xué)成績優(yōu)等、良等人數(shù)共占40%、等人數(shù)僅占10%,說明該校期末考試成績比較好.(只要合理,均給分)
21.解: (1)∵在Rt△AOB中,∠AOB=900,∠ABO=600,OB=1
∴AB=2,OA=
∴點(diǎn)A坐標(biāo)
∵二次函數(shù)y=ax2+bx+c的圖像經(jīng)過點(diǎn)A、點(diǎn)B和點(diǎn)C
∴
解得
∴該二次函數(shù)的表達(dá)式
(2)對稱軸為;頂點(diǎn)坐標(biāo)為.
(3)∵對稱軸為,A
∴點(diǎn)D坐標(biāo)
∴四邊形ABCD為等腰梯形
22.解:過點(diǎn)D作DE⊥BC交BC延長線于點(diǎn)E,過點(diǎn)E作EF∥AD交AB于點(diǎn)F
在Rt△CDE中,∠CED=90°,∠DCE=30°,CD=10
∴DE=5, CE=
∴BE=
∵太陽光線AD與水平地面成30°角
∴∠FEB=30°
在Rt△BFE中,∠B=90°,∠FEB=30°,BE=
∴BF=BE?tan∠FEB==
∵AF=DE=5
∴AB=AF+BF===19.1≈19
答旗桿AB的高度為19米.
23解:⑴
⑵如圖所示
⑶如圖所示
24.解:(1)如圖1,AE=AF. 理由:證明△ABE≌△ADF(ASA)
(2)如圖2, PE=PF.
理由:過點(diǎn)P作PM⊥BC于M,PN⊥DC于N,則PM=PN.由此可證得△PME≌△PNF(ASA),從而證得PE=PF.
(3) PE、PF不具有(2)中的數(shù)量關(guān)系.
當(dāng)點(diǎn)P在AC的中點(diǎn)時(shí),PE、PF才具有(2)中的數(shù)量關(guān)系.
25.解:(1)由已知條件,得
(2)由已知條件,得
解得
∴應(yīng)從A村運(yùn)到甲庫50噸,運(yùn)到乙?guī)?50噸;從B村運(yùn)到甲庫190噸,運(yùn)到乙?guī)?10噸,這樣調(diào)運(yùn)就能使總運(yùn)費(fèi)最少.
(3)這個(gè)同學(xué)說的對.
理由:設(shè)A村的運(yùn)費(fèi)為元,則,
∴當(dāng)x=200時(shí),A村的運(yùn)費(fèi)最少,
而y=-2x+9680(0≤x≤200)
∵K=-2<0
∴X=200時(shí),y有最小值,兩村的總運(yùn)費(fèi)也是最少。
即當(dāng)x=200時(shí),A村和兩村的總運(yùn)費(fèi)都最少。
26.解:(1)如圖,作DE⊥AB于E,CF⊥AB于F,
依題意可知,四邊形CDEF是矩形,AE=BF,
在Rt△ADE中,
∴梯形ABCD的周長為, 面積為.
(2)∵PQ平分梯形ABCD的周長,
∴
解得
∴當(dāng)PQ平分梯形ABCD的周長時(shí),
(3)∵PQ平分梯形ABCD的面積
∴①當(dāng)點(diǎn)P在AD邊上時(shí),
解得
②當(dāng)點(diǎn)P在DC邊上時(shí),
即
解得
③當(dāng)點(diǎn)P在CB邊上時(shí),
∵△<0,∴此方程無解.
∴當(dāng)PQ平分梯形ABCD的面積時(shí),
(4).
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com