所以TA⊥TB.即以AB為直徑的圓恒過點T(0.1) 所以在坐標(biāo)平面上存在一個定點T(0.1)滿足條件. 查看更多

 

題目列表(包括答案和解析)

分別以雙曲線G:
x2
16
-
y2
9
=1
的焦點為頂點,以雙曲線G的頂點為焦點作橢圓C.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點P的坐標(biāo)為(0,3),在y軸上是否存在定點M,過點M且斜率為k的動直線l 交橢圓于A、B兩點,使以AB為直徑的圓恒過點P,若存在,求出M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

(2012•東城區(qū)二模)已知拋物線C:x2=4y,M為直線l:y=-1上任意一點,過點M作拋物線C的兩條切線MA,MB,切點分別為A,B.
(Ⅰ)當(dāng)M的坐標(biāo)為(0,-1)時,求過M,A,B三點的圓的方程;
(Ⅱ)證明:以AB為直徑的圓恒過點M.

查看答案和解析>>

以F1(0,-1),F(xiàn)2(0,1)為焦點的橢圓C過點P(
2
2
,1)

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點S(-
1
3
,0)
的動直線l交橢圓C于A、B兩點,試問:在坐標(biāo)平面上是否存在一個定點T,使得無論l如何轉(zhuǎn)動,以AB為直徑的圓恒過點T?若存在,求出點T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

已知橢圓C的中心在坐標(biāo)原點,離心率e=
2
2
,且其中一個焦點與拋物線y=
1
4
x2
的焦點重合.
(1)求橢圓C的方程;
(2)過點S(-
1
3
,0)的動直線l交橢圓C于A、B兩點,試問:在坐標(biāo)平面上是否存在一個定點T,使得無論l如何轉(zhuǎn)動,以AB為直徑的圓恒過點T,若存在,求出點T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

(本小題滿分13分)已知橢圓C的中心在坐標(biāo)原點,離心率,且其中一個焦點與拋物線的焦點重合.(Ⅰ)求橢圓C的方程;(Ⅱ)過點的動直線l交橢圓CA、B兩點,試問:在坐標(biāo)平面上是否存在一個定點T,使得無論l如何轉(zhuǎn)動,以AB為直徑的圓恒過點T,若存在,求出點T的坐標(biāo);若不存在,請說明理由.

 

 

查看答案和解析>>


同步練習(xí)冊答案