故所求橢圓方程為 查看更多

 

題目列表(包括答案和解析)

已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過(guò)點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存過(guò)點(diǎn)(2,1)的直線(xiàn)與橢圓相交于不同的兩點(diǎn),滿(mǎn)足?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.

【解析】第一問(wèn)利用設(shè)橢圓的方程為,由題意得

解得

第二問(wèn)若存在直線(xiàn)滿(mǎn)足條件的方程為,代入橢圓的方程得

因?yàn)橹本(xiàn)與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為,

所以

所以.解得。

解:⑴設(shè)橢圓的方程為,由題意得

解得,故橢圓的方程為.……………………4分

⑵若存在直線(xiàn)滿(mǎn)足條件的方程為,代入橢圓的方程得

因?yàn)橹本(xiàn)與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為

所以

所以

,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229220620471975_ST.files/image009.png">,即,

所以

所以,解得

因?yàn)锳,B為不同的兩點(diǎn),所以k=1/2.

于是存在直線(xiàn)L1滿(mǎn)足條件,其方程為y=1/2x

 

查看答案和解析>>

設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).

(Ⅰ)若直線(xiàn)的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線(xiàn)的斜率 滿(mǎn)足

【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有  ①

,得,

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線(xiàn)OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

由條件得消去并整理得  ②

,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線(xiàn)OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

由P在橢圓上,有

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

已知m>1,直線(xiàn),橢圓C:、分別為橢圓C的左、右焦點(diǎn).

(Ⅰ)當(dāng)直線(xiàn)過(guò)右焦點(diǎn)時(shí),求直線(xiàn)的方程;

(Ⅱ)設(shè)直線(xiàn)與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線(xiàn)段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.[

【解析】第一問(wèn)中因?yàn)橹本(xiàn)經(jīng)過(guò)點(diǎn),0),所以,得.又因?yàn)閙>1,所以,故直線(xiàn)的方程為

第二問(wèn)中設(shè),由,消去x,得,

則由,知<8,且有

由題意知O為的中點(diǎn).由可知從而,設(shè)M是GH的中點(diǎn),則M().

由題意可知,2|MO|<|GH|,得到范圍

 

查看答案和解析>>

設(shè)橢圓 )的一個(gè)頂點(diǎn)為,分別是橢圓的左、右焦點(diǎn),離心率 ,過(guò)橢圓右焦點(diǎn) 的直線(xiàn)  與橢圓 交于 , 兩點(diǎn).

(1)求橢圓的方程;

(2)是否存在直線(xiàn) ,使得 ,若存在,求出直線(xiàn)  的方程;若不存在,說(shuō)明理由;

【解析】本試題主要考查了橢圓的方程的求解,以及直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到,然后求解得到橢圓方程(2)中,對(duì)直線(xiàn)分為兩種情況討論,當(dāng)直線(xiàn)斜率存在時(shí),當(dāng)直線(xiàn)斜率不存在時(shí),聯(lián)立方程組,結(jié)合得到結(jié)論。

解:(1)橢圓的頂點(diǎn)為,即

,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分

(2)由題可知,直線(xiàn)與橢圓必相交.

①當(dāng)直線(xiàn)斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意.                    --------5分

②當(dāng)直線(xiàn)斜率存在時(shí),設(shè)存在直線(xiàn),且.

,       ----------7分

,,               

   = 

所以,                               ----------10分

故直線(xiàn)的方程為 

 

查看答案和解析>>

已知曲線(xiàn)C:(m∈R)

(1)   若曲線(xiàn)C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;

(2)     設(shè)m=4,曲線(xiàn)c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線(xiàn)y=kx+4與曲線(xiàn)c交于不同的兩點(diǎn)M、N,直線(xiàn)y=1與直線(xiàn)BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線(xiàn)。

【解析】(1)曲線(xiàn)C是焦點(diǎn)在x軸上的橢圓,當(dāng)且僅當(dāng)解得,所以m的取值范圍是

(2)當(dāng)m=4時(shí),曲線(xiàn)C的方程為,點(diǎn)A,B的坐標(biāo)分別為,

,得

因?yàn)橹本(xiàn)與曲線(xiàn)C交于不同的兩點(diǎn),所以

設(shè)點(diǎn)M,N的坐標(biāo)分別為,則

直線(xiàn)BM的方程為,點(diǎn)G的坐標(biāo)為

因?yàn)橹本(xiàn)AN和直線(xiàn)AG的斜率分別為

所以

,故A,G,N三點(diǎn)共線(xiàn)。

 

查看答案和解析>>


同步練習(xí)冊(cè)答案