題目列表(包括答案和解析)
九(1)班數(shù)學課題學習小組,為了研究學習二次函數(shù)問題,他們經(jīng)歷了實踐——應用——探究的過程
(1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道進行測量,測得隧道的路面寬為10米,隧道頂部最高處距地面6.25米,并畫出了隧道截面圖,建立了如圖所示的直角坐標系,請你求出拋物線的解析式
(2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎起方向上的高度差至少為0.5米,為了確保安全,問該隧道能否讓最寬3米,最高3.5米的兩輛車居中并列行駛(不考慮兩車之間的空隙)?
(3)探究:該課題學習小組為進一步探究拋物線的有關(guān)知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
①如圖,在拋物線內(nèi)作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸上,設矩形ABCD的周長為為l,求l的最大值
②如圖,過原點作一條直線y=x,交拋物線于M,交拋物線的對稱軸于N,P為直線OM上一動點,過點P作x軸的垂線交拋物線于點Q,問在直線OM上是否存在點P,使以點P、N、Q為頂點的三角形為等腰直角三角形?若存在,求出點P的坐標,若不存在,請說明理由
九(1)班數(shù)學課題學習小組,為了研究學習二次函數(shù)問題,他們經(jīng)歷了實踐——應用——探究的過程
(1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道進行測量,測得隧道的路面寬為10米,隧道頂部最高處距地面6.25米,并畫出了隧道截面圖,建立了如圖所示的直角坐標系,請你求出拋物線的解析式
(2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎起方向上的高度差至少為0.5米,為了確保安全,問該隧道能否讓最寬3米,最高3.5米的兩輛車居中并列行駛(不考慮兩車之間的空隙)?
(3)探究:該課題學習小組為進一步探究拋物線的有關(guān)知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
①如圖,在拋物線內(nèi)作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸上,設矩形ABCD的周長為為l,求l的最大值
②如圖,過原點作一條直線y=x,交拋物線于M,交拋物線的對稱軸于N,P為直線OM上一動點,過點P作x軸的垂線交拋物線于點Q,問在直線OM上是否存在點P,使以點P、N、Q為頂點的三角形為等腰直角三角形?若存在,求出點P的坐標,若不存在,請說明理由
A、直線y=3x-1在y軸上的截距為-1 | B、直線y=3x-1不經(jīng)過第二象限 | C、直線y=3x-1在x軸上方的點的橫坐標的取值范圍是x>1 | D、該一次函數(shù)的函數(shù)值y隨自變量x的值增大而增大 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com