同理mi=mn?(mn-m)?(mn-2m)?-?[mn-m(i-1)] ②∵1<i≤m<n.∴mn-n<mn-m.mn-2n<mn-2m.-.mn-n(i-1)<mn-m(i-1) ③ 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=
a(x-b)(x-b)2+c
(a≠0,b∈R,c>0),g(x)=m[f(x)]2-n(mn>0),給出下列三個命題:
①函數(shù)f(x)的圖象關于x軸上某點成中心對稱;
②存在實數(shù)p和q,使得p≤f(x)≤q對于任意的實數(shù)x恒成立;
③關于x的方程g(x)=0的解集可能為{-4,-2,0,3}.
則是真命題的有
①②
①②
.(不選、漏選、選錯均不給分)

查看答案和解析>>

如圖,直角三角形ABC的頂點A的坐標為(-1,0),直角頂點B的坐標為(0,-
3
)
,頂點C在x軸上.求:
(1)求點C的坐標及△ABC的外接圓M的方程;
(2)設△ABC的外接圓M的圓心為點M,另有一個定點N(-3,-4),作出一個以MN為直徑,G為圓心的圓,記為圓G,圓M和圓G交于點P和點Q,直線NP,NQ是圓M的切線嗎?請說明理由;
(3)求直線PQ的方程.

查看答案和解析>>

已知橢圓 
x24
+y2=1
的左頂點為A,過A作兩條互相垂直的弦AM、AN交橢圓于M、N兩點.
(1)當直線AM的斜率為1時,求點M的坐標;
(2)當直線AM的斜率變化時,直線MN是否過x軸上的一定點,若過定點,請給出證明,并求出該定點,若不過定點,請說明理由.

查看答案和解析>>

已知點P是直角坐標平面內(nèi)的動點,點P到直線l1:x=-2的距離為d1,到點F(-1,0)的距離為d2,且
d2
d1
=
2
2

(1)求動點P所在曲線C的方程;
(2)直線l過點F且與曲線C交于不同兩點A、B(點A或B不在x軸上),分別過A、B點作直線l1:x=-2的垂線,對應的垂足分別為M、N,試判斷點F與以線段MN為直徑的圓的位置關系(指在圓內(nèi)、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點),問是否存在實數(shù)λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,請說明理由.
進一步思考問題:若上述問題中直線l1:x=-
a2
c
、點F(-c,0)、曲線C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,則使等式S22=λS1S3成立的λ的值仍保持不變.請給出你的判斷
 
 (填寫“不正確”或“正確”)(限于時間,這里不需要舉反例,或證明).

查看答案和解析>>

設點M是點N(2,-3,5)關于坐標平面xoy的對稱點,則線段MN的長度等于
10
10

查看答案和解析>>


同步練習冊答案