題目列表(包括答案和解析)
x2 |
m |
y2 |
27 |
|
A、[9,+∞) |
B、(1,9] |
C、(1,2] |
D、[2,+∞) |
已知拋物線直線過拋物線的焦點且與該拋物線交于、兩點(點A在第一象限)
(Ⅰ)若,求直線的方程;
(Ⅱ)過點的拋物線的切線與直線交于點,求證:。
【解析】本試題主要是考查了直線與拋物線的位置關系,利用聯(lián)立方程組,結(jié)合韋達定理求解弦長和直線的方程,以及證明垂直問題。
x2 |
m |
y2 |
27 |
|
A.[9,+∞) | B.(1,9] | C.(1,2] | D.[2,+∞) |
已知拋物線直線過拋物線的焦點且與該拋物線交于、兩點(點A在第一象限)
(Ⅰ)若,求直線的方程;
(Ⅱ)過點的拋物線的切線與直線交于點,求證:。
【解析】本試題主要是考查了直線與拋物線的位置關系,利用聯(lián)立方程組,結(jié)合韋達定理求解弦長和直線的方程,以及證明垂直問題。
在△ABC中,內(nèi)角A、B、C所對邊的邊長分別是a、b、c,已知c=2,C=.
(Ⅰ)若△ABC的面積等于,求a、b;
(Ⅱ)若,求△ABC的面積.
【解析】第一問中利用余弦定理及已知條件得又因為△ABC的面積等于,所以,得聯(lián)立方程,解方程組得.
第二問中。由于即為即.
當時, , , , 所以當時,得,由正弦定理得,聯(lián)立方程組,解得,得到。
解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得,………1分
又因為△ABC的面積等于,所以,得,………1分
聯(lián)立方程,解方程組得. ……………2分
(Ⅱ)由題意得,
即. …………2分
當時, , , , ……1分
所以 ………………1分
當時,得,由正弦定理得,聯(lián)立方程組
,解得,; 所以
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com