∴f(x)在區(qū)間[1.+∞)上的最小值為f(1)=. 查看更多

 

題目列表(包括答案和解析)

19.已知函數(shù)fx)=x2+2x·tanθ-1,x∈[-1,],其中θ∈(-,).

(1)當θ=-時,求函數(shù)fx)的最大值與最小值;

(2)求θ的取值范圍,使yfx)在區(qū)間[-1,]上是單調函數(shù).

查看答案和解析>>

已知函數(shù)
(I)求f(x)的單調區(qū)間;
(II)若對任意x∈[1,e],使得g(x)≥-x2+(a+2)x恒成立,求實數(shù)a的取值范圍;
(III)設F(x)=,曲線y=F(x)上是否總存在兩點P,Q,使得△POQ是以O(O為坐標原點)為鈍角柄點的鈍角三角開,且最長邊的中點在y軸上?請說明理由。

查看答案和解析>>

已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.

(1)求f(x)的解析式;

(2)若f(x)在區(qū)間[2a,a+1]上不單調,求實數(shù)的取值范圍;

(3)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數(shù)m的取值范圍.

查看答案和解析>>

設函數(shù)f(x)=x4bx2cxd,當xt1時,f(x)有極小值.

(1)若b=-6時,函數(shù)fx)有極大值,求實數(shù)c的取值范圍;

(2)在(1)的條件下,若存在實數(shù)c,使函數(shù)f(x)在閉區(qū)間[m-2,m+2]上單調遞增,求m的取值范圍;

(3)若函數(shù)f(x)只有一個極值點,且存在t2∈(t1,t1+1),使f ′(t2)=0,證明:函數(shù)g(x)=f(x)-x2t1x在區(qū)間(t1,t2)內(nèi)最多有一個零點.

查看答案和解析>>

(本小題滿分16分)設函數(shù)fx)=x4bx2cxd,當xt1時,fx)有極小值.
(1)若b=-6時,函數(shù)fx)有極大值,求實數(shù)c的取值范圍;
(2)在(1)的條件下,若存在實數(shù)c,使函數(shù)fx)在閉區(qū)間[m-2,m+2]上單調遞增,求實數(shù)m的取值范圍;
(3)若函數(shù)fx)只有一個極值點,且存在t2∈(t1,t1+1),使f ′(t2)=0,證明:函數(shù)gx)=fx)-x2t1x在區(qū)間(t1,t2)內(nèi)最多有一個零點.

查看答案和解析>>


同步練習冊答案