因此.θ的取值范圍是 查看更多

 

題目列表(包括答案和解析)

設(shè)為實(shí)數(shù),首項(xiàng)為,公差為的等差數(shù)列的前n項(xiàng)和為,滿足

(1)若,求;

(2)求d的取值范圍.

【解析】本試題主要考查了數(shù)列的求和的運(yùn)用以及通項(xiàng)公式的運(yùn)用。第一問中,利用和已知的,得到結(jié)論

第二問中,利用首項(xiàng)和公差表示,則方程是一個有解的方程,因此判別式大于等于零,因此得到d的范圍。

解:(1)因?yàn)樵O(shè)為實(shí)數(shù),首項(xiàng)為,公差為的等差數(shù)列的前n項(xiàng)和為,滿足

所以

(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911400068702336/SYS201207091140476245773106_ST.files/image012.png">

得到關(guān)于首項(xiàng)的一個二次方程,則方程必定有解,結(jié)合判別式求解得到

 

查看答案和解析>>

若方程x2+(m-2)x-m+5=0的兩個根都大于2,求實(shí)數(shù)m的取值范圍.

閱讀下面的解法,回答提出的問題.

解:第一步,令判別式Δ=(m-2)2-4(-m+5)≥0,

解得m≥4或m≤-4;

第二步,設(shè)兩根為x1,x2,由x1>2,x2>2得

,所以

所以m<-2.

第三步,由得m≤-4.

第四步,由第三步得出結(jié)論.

當(dāng)m∈(-∞,-4]時,此方程兩根均大于2.

但當(dāng)取m=-6檢驗(yàn)知,方程x2-8x+11=0兩根為x=4±,其中4-<2.

試問:產(chǎn)生錯誤的原因是什么?

查看答案和解析>>

已知正三角形ABC的頂點(diǎn)A(1,1),B(1,3),頂點(diǎn)C在第一象限,若點(diǎn)(x,y)在△ABC內(nèi)部,則z=-x+y的取值范圍是

(A)(1-,2)     (B)(0,2)     (C)(-1,2)   (D)(0,1+)

【解析】    做出三角形的區(qū)域如圖,由圖象可知當(dāng)直線經(jīng)過點(diǎn)B時,截距最大,此時,當(dāng)直線經(jīng)過點(diǎn)C時,直線截距最小.因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912420929634592/SYS201207091242163901965792_ST.files/image005.png">軸,所以,三角形的邊長為2,設(shè),則,解得,,因?yàn)轫旤c(diǎn)C在第一象限,所以,即代入直線,所以的取值范圍是,選A.

 

查看答案和解析>>

  已知  設(shè)P:函數(shù)在R上單調(diào)遞減;  Q:不等式的解集為R,若“PQ”是真命題,“PQ”是假命題,求的取值范圍.

[解題思路]:“PQ”是真命題,“PQ”是假命題,根據(jù)真假表知,P,Q之中一真一假,因此有兩種情況,要分類討論.

查看答案和解析>>

某公司生產(chǎn)的A型商品通過租賃柜臺進(jìn)入某商場銷售. 第一年,商場為吸引廠家,決定免收該年管理費(fèi),因此,該年A型商品定價為每件70元,年銷售量為12.7萬件. 第二年,商場開始對該商品征收比率為m%的管理費(fèi)(即銷售100元要征收m元),于是該商品每件的定價提高,預(yù)計(jì)年銷售量將減少m萬件.

(Ⅰ)將第二年商場對該商品征收的管理費(fèi)y(萬元)表示成m的函數(shù),并指出這個函數(shù)的定義域;

(Ⅱ)要使第二年商場在此項(xiàng)經(jīng)營中收取的管理費(fèi)不少于21萬元,則商場對該商品征收管理費(fèi)的比率m%的范圍是多少?

(Ⅲ)第二年,商場在所收管理費(fèi)不少于21萬元的前提下,求使廠家獲得最大銷售金額時的m的值.

查看答案和解析>>


同步練習(xí)冊答案