那么當(dāng)n=k+1時(shí).uk+1=f(2k+1)=2f(2k)+2kf(2)=2f(2k)+2k+1>0. 查看更多

 

題目列表(包括答案和解析)

數(shù)列,滿(mǎn)足

(1)求,并猜想通項(xiàng)公式。

(2)用數(shù)學(xué)歸納法證明(1)中的猜想。

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式求解,并用數(shù)學(xué)歸納法加以證明。第一問(wèn)利用遞推關(guān)系式得到,,,,并猜想通項(xiàng)公式

第二問(wèn)中,用數(shù)學(xué)歸納法證明(1)中的猜想。

①對(duì)n=1,等式成立。

②假設(shè)n=k時(shí),成立,

那么當(dāng)n=k+1時(shí),

,所以當(dāng)n=k+1時(shí)結(jié)論成立可證。

數(shù)列,滿(mǎn)足

(1),,并猜想通項(xiàng)公。  …4分

(2)用數(shù)學(xué)歸納法證明(1)中的猜想。①對(duì)n=1,等式成立。  …5分

②假設(shè)n=k時(shí),成立,

那么當(dāng)n=k+1時(shí),

,             ……9分

所以

所以當(dāng)n=k+1時(shí)結(jié)論成立                     ……11分

由①②知,猜想對(duì)一切自然數(shù)n均成立

 

查看答案和解析>>

設(shè)數(shù)列{an}滿(mǎn)足a1=2,an+1=2an+2,用數(shù)學(xué)歸納法證明an=4×2n-1-2的第二步中,設(shè)n=k時(shí)結(jié)論成立,即ak=4×2k-1-2,那么當(dāng)n=k+1時(shí), __________.

查看答案和解析>>

某同學(xué)回答“用數(shù)學(xué)歸納法證明<n+1(n∈N)”的過(guò)程如下:

證明:(1)當(dāng)n=1時(shí),顯然命題是正確的;(2)假設(shè)n=k時(shí)有<k+1,那么當(dāng)n=k+1時(shí),=(k+1)+1,所以當(dāng)n=k+1時(shí)命題是正確的,由(1)(2)可知對(duì)于n∈N,命題都是正確的.以上證法是錯(cuò)誤的,錯(cuò)誤在于(    )

A.當(dāng)n=1時(shí),驗(yàn)證過(guò)程不具體

B.歸納假設(shè)的寫(xiě)法不正確

C.從k到k+1的推理不嚴(yán)密

D.從k到k+1的推理過(guò)程沒(méi)有使用歸納假設(shè)

查看答案和解析>>

設(shè)數(shù)列{an}滿(mǎn)足a1=2,an+1=2an+2,用數(shù)學(xué)歸納法證明an=4×2n-1-2的第二步中,設(shè)n=k時(shí)結(jié)論成立,即ak=4×2k-1-2,那么當(dāng)n=k+1時(shí), __________.

查看答案和解析>>

設(shè)數(shù)列{an}滿(mǎn)足a1=2,an+1=2an+2,用數(shù)學(xué)歸納法證明an=4·2n-1-2的第二步中,設(shè)n=k時(shí)結(jié)論成立,即ak=4·2k-1-2,那么當(dāng)n=k+1時(shí),_______.

查看答案和解析>>


同步練習(xí)冊(cè)答案