題目列表(包括答案和解析)
若(x-i)i=y+2i,x,y∈R,則復(fù)數(shù)x+yi=________.
解析:由已知得:1+xi=y+2i,∴x=2,y=1,∴x+yi=2+i.
已知函數(shù)f(x)=()x,x∈[-1,1],函數(shù)g(x)=f2(x)-2af(x)+3的最小值為h(a).
(1)求h(a)的解析式;
(2)是否存在實(shí)數(shù)m,n同時(shí)滿足下列兩個(gè)條件:①m>n>3;②當(dāng)h(a)的定義域?yàn)閇n,m]時(shí),值域?yàn)閇n2,m2]?若存在,求出m,n的值;若不存在,請(qǐng)說明理由.
已知函數(shù)在x=1處取得極值2.
(1)求f(x)的解析式;
(2)設(shè)A是曲線y=f(x)上除原點(diǎn)O外的任意一點(diǎn),過OA的中點(diǎn)且垂直于x軸的直線交曲線于點(diǎn)B,試問:是否存在這樣的點(diǎn)A,使得曲線在點(diǎn)B處的切線與OA平行?若存在,求出點(diǎn)A的坐標(biāo);若不存在,說明理由;
(3)設(shè)函數(shù)g(x)=x2-2ax+a,若對(duì)于任意x1∈R,總存在x2∈[-1,1],使得g(x2)≤f(x1),求實(shí)數(shù)a的取值范圍.
設(shè)f (x)=sin 2x+(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 該函數(shù)的圖象可由 的圖象經(jīng)過怎樣的平移和伸縮變換得到?
(Ⅱ)若f (θ)=,其中,求cos(θ+)的值;
【解析】第一問中,
即變換分為三步,①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;
②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的倍,得到函數(shù)的圖象;
③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長(zhǎng)到原來的2倍,得到函數(shù)的圖象;
第二問中因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則,又 ,,從而
進(jìn)而得到結(jié)論。
(Ⅰ) 解:
即!3分
變換的步驟是:
①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;
②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的倍,得到函數(shù)的圖象;
③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長(zhǎng)到原來的2倍,得到函數(shù)的圖象;…………………………………3分
(Ⅱ) 解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則,又 ,,從而……2分
(1)當(dāng)時(shí),;…………2分
(2)當(dāng)時(shí);
已知函數(shù)f(x)=ax3+x2sin-6x+1,且對(duì)任意的實(shí)數(shù)t,恒有(-)≥0,(3|cost|-1)≤0.
(1)求函數(shù)f(x)的解析式;
(2)若對(duì)于任意的x1,x2∈[m,m+2](m≥1),不等式|f(x1)-f(x2)|≤26恒成立,試問:這樣的m是否存在,若存在,請(qǐng)求出m的范圍;若不存在,說明理由.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com