由≥1可化為 查看更多

 

題目列表(包括答案和解析)

為建設(shè)好長、株、潭“兩型社會”改革實(shí)驗(yàn)區(qū),加快二市經(jīng)濟(jì)一體化進(jìn)程,某規(guī)劃部門在三市的交界處擬建一個大型環(huán)保生態(tài)公園,并在公園入口處的東南方位建造一個供市民休閑健身的小型綠化廣場,如圖是步行小道設(shè)計(jì)方案示意圖,其中,Ox,Oy分別表示自西向東,自南向北的兩條主干道,設(shè)計(jì)方案是自主干道交匯點(diǎn)O處修一條步行小道,小道為拋物線y=x2的一段,在小道上依次以點(diǎn)P1(x1y1),P2(x2,y2),…,P(xn,yn)(n≥10,n∈N*)為圓心,修一系列圓型小道,且這些圓型小道與主干道Ox分別于相切于A1,A2,…,An,…,且任意相鄰的兩圓彼此外切,若x1=1(單位:百米),且xn+1<xn
(1)記⊙P1,⊙P2,…,⊙Pn,…的半徑rn組成的數(shù)列為{rn},求通項(xiàng)公式rn
(2)若修建這些圓形小道工程預(yù)算總費(fèi)用為50萬元,根據(jù)以往施工經(jīng)驗(yàn)可知,面積為S的圓形小道的實(shí)際施工費(fèi)用為10
πS
萬元,試問修建好前n(n≥10,n∈N*)個圓型小道,預(yù)算費(fèi)用是否夠用,請說明你的理由.

查看答案和解析>>

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項(xiàng)式.
對于cos3x,我們有
cos3x=cos(2x+x)=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cocs.
可見cos3x可以表示為cosx的三次多項(xiàng)式.
一般地,存在一個n次多項(xiàng)式Pn(t),使得cosnx=Pn(cosx),這些多項(xiàng)式Pn(t)稱為切比雪夫(P.L.Tschebyscheff)多項(xiàng)式.
(1)請嘗試求出P4(t),即用一個cosx的四次多項(xiàng)式來表示cos4x.
(2)化簡cos(60°-θ)cos(60°+θ)cosθ,并利用此結(jié)果求sin20°sin40°sin60°sin80°的值.

查看答案和解析>>

由于濃酸泄漏對河流形成了污染,現(xiàn)決定向河中投入固體堿.1個單位的固體堿在水中逐步溶化,水中的堿濃度y與時間x的關(guān)系,可近似地表示為y=
-
16
x+2
-x+8    0≤x≤2
4-x                  2<x≤4
.只有當(dāng)河流中堿的濃度不低于1時,才能對污染產(chǎn)生有效的抑制作用.
(1)如果只投放1個單位的固體堿,則能夠維持有效抑制作用的時間有多長?
(2)當(dāng)河中的堿濃度開始下降時,即刻第二次投放1個單位的固體堿,此后,每一時刻河中的堿濃度認(rèn)為是各次投放的堿在該時刻相應(yīng)的堿濃度的和,求河中堿濃度可能取得的最大值.

查看答案和解析>>

由于濃酸泄漏對河流形成了污染,現(xiàn)決定向河中投入固體堿.1個單位的固體堿在水中逐步溶化,水中的堿濃度y(個濃度單位)與時間x(個時間單位)的關(guān)系為y=
-
24
x+3
-x+8,   0≤x≤
3
2
23
12
-
1
2
x   ,      
3
2
<x≤
23
6
.只有當(dāng)河流中堿的濃度不低于1(個濃度單位)時,才能對污染產(chǎn)生有效的抑制作用.
(1)如果只投放1個單位的固體堿,則能夠維持有效抑制作用的時間有多長?
(2)當(dāng)河中的堿濃度開始下降時,即刻第二次投放1個單位的固體堿,此后,每一時刻河中的堿濃度認(rèn)為是兩次投放的堿在該時刻相應(yīng)的堿濃度的和,求河中堿濃度可能取得的最大值.

查看答案和解析>>

由于濃酸泄漏對河流形成了污染,現(xiàn)決定向河中投入固體堿.1個單位的固體堿在水中逐步溶化,水中的堿濃度y與時間x的關(guān)系,可近似地表示為y=.只有當(dāng)河流中堿的濃度不低于1時,才能對污染產(chǎn)生有效的抑制作用.
(1)如果只投放1個單位的固體堿,則能夠維持有效抑制作用的時間有多長?
(2)當(dāng)河中的堿濃度開始下降時,即刻第二次投放1個單位的固體堿,此后,每一時刻河中的堿濃度認(rèn)為是各次投放的堿在該時刻相應(yīng)的堿濃度的和,求河中堿濃度可能取得的最大值.

查看答案和解析>>


同步練習(xí)冊答案