題目列表(包括答案和解析)
如圖,,為圓柱的母線,是底面圓的直徑,,分別是,的中點(diǎn),.
(1)證明:;
(2)證明:;
(3)假設(shè)這是個(gè)大容器,有條體積可以忽略不計(jì)的小魚能在容器的任意地方游弋,如果魚游到四棱錐 內(nèi)會(huì)有被捕的危險(xiǎn),求魚被捕的概率.
如圖,,為圓柱的母線,是底面圓的直徑,,分別是,的中點(diǎn),.
(1)證明:;
(2)證明:;
(3)假設(shè)這是個(gè)大容器,有條體積可以忽略不計(jì)的小魚能在容器的任意地方游弋,如果魚游到四棱錐 內(nèi)會(huì)有被捕的危險(xiǎn),求魚被捕的概率.
把長(zhǎng)和寬分別為6和3的矩形卷成一個(gè)圓柱的側(cè)面,求這個(gè)圓柱的體積.
一、填空題:
1.;2. 79 ;3.1; 4. ; 5.;6. ; 7.16 ;8.7; 9.2; 10. ; 11. ; 12. ; 13. 2; 14. 3955.
特別說明:有消息說,今年數(shù)學(xué)的填空題的壓軸題將比較新、比較難,我們?cè)谠u(píng)講時(shí)要教育學(xué)生有這方面的心理準(zhǔn)備。
二、解答題:
15.解:(1)
∵ ∴┉┉┉┉┉┉┉┉┉┉┉┉┉4分
┉┉┉┉┉┉┉7分
(2)∵(
由正弦定理得(2sinA-sinC)cosB=sinBcosC┉┉┉┉┉┉8分
∴2sinAcosB-sinCcosB=sinBcosC ∴2sinAcosB=sin(B+C)
∵ ∴,
∴┉┉┉┉┉┉10分
∴┉┉┉┉┉┉11分
∴┉┉┉┉┉┉12分
又∵,∴ ┉┉┉┉┉┉13分
故函數(shù)f(A)的取值范圍是┉┉┉┉┉┉14分
16. 解:(1)∵函數(shù)的圖象的對(duì)稱軸為
要使在區(qū)間上為增函數(shù),
當(dāng)且僅當(dāng)>0且 ……………………………3分
若=1則=-1,
若=2則=-1,1
若=3則=-1,1; ……………………………5分
∴事件包含基本事件的個(gè)數(shù)是1+2+2=5
∴所求事件的概率為 ……………………………7分
(2)由(Ⅰ)知當(dāng)且僅當(dāng)且>0時(shí),
函數(shù)上為增函數(shù),
依條件可知試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?sub>
構(gòu)成所求事件的區(qū)域?yàn)槿切尾糠帧?nbsp; ………………………………9分
由 ……………………………11分
∴所求事件的概率為 …………………………… 14分
17. (1)證明: 平面平面,,
平面平面=,平面,
平面, ,……… 2分
又為圓的直徑,, 平面!5分
(2)設(shè)的中點(diǎn)為,則,又,則,為平行四邊形, ……… 7分
,又平面,平面,
平面!9分
(3)過點(diǎn)作于,平面平面,
平面,,……… 11分
平面,
,……… 14分
. ……… 15分
18. 解:(1)因?yàn)橹本:過定點(diǎn)T(4,3)……… 2分
由題意,要使圓的面積最小, 定點(diǎn)T(4,3)在圓上,
所以圓的方程為;……… 4分
(2)A(-5,0),B(5,0),設(shè),則……(1)
,,
由成等比數(shù)列得,,
即,整理得:,
即……(2)
由(1)(2)得:,,
……………………… 9分
(3)
,……… 11分
由題意,得直線與圓O的一個(gè)交點(diǎn)為M(4,3),又知定點(diǎn)Q(,3),
直線:,,則當(dāng)時(shí)有最大值32. ……… 14分
即有最大值為32,
此時(shí)直線的方程為.……… 15分
特別說明:第19題、第20題不是完整的壓軸題,原作者都有第3問設(shè)計(jì),為了強(qiáng)化考試策略教育,讓學(xué)生有信心做壓軸題的開始一兩問,并在考前體會(huì)做好基礎(chǔ)題可以拿高分,我們特意進(jìn)行了刪減處理。特別優(yōu)秀的班級(jí)(如市中的奧班,可以添加第三問(祥見文末附件),并將評(píng)分標(biāo)準(zhǔn)作相應(yīng)調(diào)整。
19.解:(1)∵,其定義域?yàn)?sub>,
∴.……………………… 3分
∵是函數(shù)的極值點(diǎn),∴,即.
∵,∴. ……………………… 6分
經(jīng)檢驗(yàn)當(dāng)時(shí),是函數(shù)的極值點(diǎn),
∴. ……………………… 8分
(2)由題意,可知方程在區(qū)間上有根,因?yàn)?sub>在上是單調(diào)減函數(shù),在上是單調(diào)增函數(shù),……………………… 10分
所以,……………………… 14分
……………………… 16分
20.解:(1) ┉┉┉┉┉┉2分
┉┉┉┉┉┉5分
┉┉┉┉┉┉8分
(2) ┉┉┉┉┉┉10分
┉┉┉┉┉┉12分
┉┉┉┉┉┉14分
┉┉┉┉┉┉16分
附加題部分
A(1)證明:因?yàn)?sub>,所以
又是圓O的直徑,所以
又因?yàn)?sub>(弦切角等于同弧所對(duì)圓周角)……………………3分
所以所以
又因?yàn)?sub>,所以相似
所以,即 ……………………5分
(2)解:因?yàn)?sub>,所以,
因?yàn)?sub>,所以
由(1)知:。所以 ……………………8分
所以,即圓的直徑
又因?yàn)?sub>,即
解得 ……………………10分
B.解:令 得到: ……………2分
解得: ……………………6
所以,矩陣A的特征值為2和3.
當(dāng), 令得,
所以,對(duì)應(yīng)的特征向量為 ……………………8
當(dāng), 令得,所以,對(duì)應(yīng)的特征向量為
矩陣A的兩個(gè)特征值分別是2和3,它們對(duì)應(yīng)的特征向量分別是和.…10分
C.解:將直線的參數(shù)方程化為普通方程為: ……………………2分
將圓C的極坐標(biāo)方程化為普通方程為: ………………4分
從圓方程中可知:圓心C(1,1),半徑 ,
所以,圓心C到直線的距離 …………6分
所以直線與圓C相交. ……………………7分
所以直線被圓C截得的弦長(zhǎng)為.……………………10分
D.證明:要證原不等式成立,只須證:
即只須證:
由柯西不等式易知上式顯然成立,所以原不等式成立.
22.解:(1)設(shè)“小明中一等獎(jiǎng)”為事件B1 ,“小輝中一等獎(jiǎng)”為事件B2 ,事件B1與事件B2相互獨(dú)立,他們倆都中一等獎(jiǎng),則P(B1B2)=P(B1)P(B2)=0.0001
所以,購(gòu)買兩張這種彩票都中一等獎(jiǎng)的概率為.………..3分
(2)設(shè)“購(gòu)買一張這種彩票中一等獎(jiǎng)”為事件A,“購(gòu)買一張這種彩票中二等獎(jiǎng)”為事件B,顯然,事件A與事件B互斥,
所以, ……………………5分
故購(gòu)買一張這種彩票能中獎(jiǎng)的概率為0.1.……………………6分
(3)對(duì)應(yīng)不中獎(jiǎng)、中二等獎(jiǎng)、中一等獎(jiǎng),的分布列如下:
……………………9分
購(gòu)買一張這種彩票的期望收益為損失元.……………………10分
23. 解:(1)設(shè)P(x,y),根據(jù)題意,得.………3分
化簡(jiǎn),得.……………………………………………4分
(2)設(shè)過Q的直線方程為,代入拋物線方程,整理,得.
∴△=.解得.………………………………………6分
所求切線方程為(也可以用導(dǎo)數(shù)求得切線方程),
此時(shí)切點(diǎn)的坐標(biāo)為(2,1),(-2,1),且切點(diǎn)在曲線C上. …………8分
由對(duì)稱性知所求的區(qū)域的面積為
.……………………………10分
附件:
第19題第3問:
(3)若對(duì)任意的都有成立,求實(shí)數(shù)的取值范圍.
(3)對(duì)任意的都有≥成立等價(jià)于對(duì)任意的都有≥.……………………… 7分
當(dāng)[1,]時(shí),.
∴函數(shù)在上是增函數(shù).
∴.………………………9分
∵,且,.
①當(dāng)且
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com