16.給出下列命題: 查看更多

 

題目列表(包括答案和解析)

給出下列命題:
①若a,b∈R+,a≠b則a3+b3>a2b+ab2
②若a,b∈R+,a<b,則
a+m
b+m
a
b

③若a,b,c∈R+,則
bc
a
+
ac
b
+
ab
c
≥a+b+c

④若3x+y=1,則
1
x
+
1
y
≥4+2
3

其中正確命題的個數(shù)為(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

給出下列命題:
(1)存在實數(shù)x,使sinx+cosx=
3
2
;
(2)若α,β是第一象限角,且α>β,則cosα<cosβ;
(3)函數(shù)y=sin(
2
3
x+
π
2
)
是偶函數(shù);
(4)函數(shù)f(x)=(1+cos2x)sin2x,x∈R,則f(x)是周期為
π
2
的偶函數(shù).
(5)函數(shù)y=cos(x+
π
3
)
的圖象是關(guān)于點(
π
6
,0)
成中心對稱的圖形
其中正確命題的序號是
 
 (把正確命題的序號都填上)

查看答案和解析>>

給出下列命題:
①|(zhì)
a
-
b
|≤|
a
|-|
b
|;②
a
b
共線,
b
,
c
平,則
a
c
為平行向量;③
a
b
,
c
為相互不平行向量,則(
b
-
c
a
-(
c
-
a
b
c
垂直;④在△ABC中,若a2taanB=b2tanA,則△ABC一定是等腰直角三角形;⑤
a
b
=
a
c
,則
a
⊥(
b
-
c
)   
其中錯誤的有
 

查看答案和解析>>

給出下列命題:
①存在實數(shù)α使sinα•cosα=1成立;
②存在實數(shù)α使sinα+cosα=
3
2
成立;
③函數(shù)y=sin(
2
-2x)
是偶函數(shù);
x=
π
8
是函數(shù)y=sin(2x+
4
)
的圖象的一條對稱軸的方程;
⑤在△ABC中,若A>B,則sinA>sinB.
其中正確命題的序號是
 
(注:把你認為正確的命題的序號都填上).

查看答案和解析>>

2、給出下列命題:
(1)直線a與平面α不平行,則a與平面α內(nèi)的所有直線都不平行;
(2)直線a與平面α不垂直,則a與平面α內(nèi)的所有直線都不垂直;
(3)異面直線a、b不垂直,則過a的任何平面與b都不垂直;
(4)若直線a和b共面,直線b和c共面,則a和c共面.其中錯誤命題的個數(shù)為
3

查看答案和解析>>

 

說明:

    一、本解答給出一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標準制訂相應(yīng)的評分細則。

    二、對計算題當考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定給分,但不得超過該部分正確解答應(yīng)得分數(shù)的一半;如果后續(xù)部分的解答有較嚴重的錯誤,就不再給分。

    三、解答右端所注分數(shù),表示考生正確做到這一步應(yīng)得累加分。

    四、只給整數(shù)分數(shù),選擇題和填空題不給中間分數(shù)。

一、選擇題:每小題5分,滿分60分。

1―5 DBADD    6―10 AAACA    11―12 BC

二、填空題:每題5分,共20分

13.    14.14    15.1    16.②③

三、解答題(滿分70分)

17.本小題主要考查正弦定理、余弦定理,三角形面積公式等基礎(chǔ)知識。

    解:(1)

                                    (5分)

   (2)

   

    得                                                             (8分)

    (10分)

18.本小題主要考查概率的基本知識與分類思想,獨立重復(fù)試驗概率問題,考查運用數(shù)學(xué)知

識分析問題解決問題的能力。

解:(1)需賽七局結(jié)束比賽說明前六局3:3打平,即在第三、第四、第五、第六局中乙恰贏一局,設(shè)需賽七局結(jié)束比賽為事件A,

                                               (5分)

   (2)設(shè)甲獲勝為事件B,則甲獲勝包括甲以4:2獲勝和甲以4:3獲勝兩種情況:

                           (12分)

19.本小題主要考查正四棱柱中線線位置關(guān)系、線面垂直判定、三垂線定理、二面角等基礎(chǔ)知識,考查空間想象能力、邏輯思維能力、運算能力以及空間向量的應(yīng)用。

    ∵AC⊥BD,∴A1C⊥BD,

若A1C⊥平面BED,則A1C⊥BE,

由三垂線定理可得B1C⊥BE,

∴△BCE∽△B1BC,

   (2)連A1G,連EG交A1C于H,則EG⊥BD,

∵A1C⊥平面BED,

∴∠A1GE是二面角A1―BD―E的平面角。

(12分)

   (1)以D為坐標原點,射線DA為x軸的正半軸,

射線DC為y軸的正半軸,建立如圖所示直角坐

標系D―xyz。

      (6分)

   (2)設(shè)向量的一個法向量,

                         (12分)

20.本小題主要考查等差數(shù)列、等比數(shù)列定義,求通項、數(shù)列求和等基礎(chǔ)知識,考查綜合分析問題的能力和推理論證能力。

    解:(1)

   

   (2)

   

21.解:(1)對求導(dǎo)得

   

―3

(-3,0)

0

(0,2)

2

(2,9)

9

 

+

0

0

+

 

 

極大

極小

 

    從而(―3,0)和(2,9)是函數(shù)的單調(diào)遞增區(qū)間,(0,2)是的單調(diào)遞減區(qū)間,

   

   (2)設(shè)曲線,則切線的方程為

   (3)根據(jù)上述研究,對函數(shù)分析如下:

   

    交點的橫坐標,交點的個數(shù)即為方程的實根的個數(shù)。

   

   

22.解:(1)

 

    把②兩邊平方得

    又代入上式得

  •     把③代入①得

       

                                             (6分)

       (2)設(shè)直線AB的傾斜角為,根據(jù)對稱性只需研究是銳角情形,不妨設(shè)是銳角,

        則

       

        從而    (9分)

        根據(jù)(1)知

       

       

        因此          (12分)

     


    同步練習冊答案