(I)求以為坐標(biāo)的點(diǎn)的軌跡G的方程, 查看更多

 

題目列表(包括答案和解析)

(2011•濰坊二模)如圖,已知定點(diǎn)F(-1,0),N(1,0),以線段FN為對(duì)角線作周長(zhǎng)是4
2
的平行四邊形MNEF.平面上的動(dòng)點(diǎn)G滿足|
GO
|=2(O為坐標(biāo)原點(diǎn))
(I)求點(diǎn)E、M所在曲線C1的方程及動(dòng)點(diǎn)G的軌跡C2的方程;
(Ⅱ)已知過(guò)點(diǎn)F的直線l交曲線C1于點(diǎn)P、Q,交軌跡C2于點(diǎn)A、B,若|
AB
|∈(2
3
15
),求△NPQ內(nèi)切圓的半徑的取值范圍.

查看答案和解析>>

(2009•成都二模)在平面直角坐標(biāo)系xOy中,Rt△ABC的斜邊BC恰在x軸上,點(diǎn)B(-2,0),C(2,0)且AD為BC邊上的高.
(I)求AD中點(diǎn)G的軌跡方程;
(Ⅱ)若一直線與(I)中G的軌跡交于兩不同點(diǎn)M、N,且線段MN恰以點(diǎn)(-1,
1
4
)為中點(diǎn),求直線MN的方程;
(Ⅲ)若過(guò)點(diǎn)(1,0)的直線l與(I)中G的軌跡交于兩不同點(diǎn)P、Q試問(wèn)在x軸上是否存在定點(diǎn)E(m,0),使
PE
QE
恒為定值λ?若存在,求出點(diǎn)E的坐標(biāo)及實(shí)數(shù)λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖,已知定點(diǎn)F(-1,0),N(1,0),以線段FN為對(duì)角線作周長(zhǎng)是4的平行四邊形MNEF.平面上的動(dòng)點(diǎn)G滿足||=2(O為坐標(biāo)原點(diǎn))
(I)求點(diǎn)E、M所在曲線C1的方程及動(dòng)點(diǎn)G的軌跡C2的方程;
(Ⅱ)已知過(guò)點(diǎn)F的直線l交曲線C1于點(diǎn)P、Q,交軌跡C2于點(diǎn)A、B,若||∈(),求△NPQ內(nèi)切圓的半徑的取值范圍.

查看答案和解析>>

如圖,已知定點(diǎn)F(-1,0),N(1,0),以線段FN為對(duì)角線作周長(zhǎng)是4的平行四邊形MNEF.平面上的動(dòng)點(diǎn)G滿足||=2(O為坐標(biāo)原點(diǎn))
(I)求點(diǎn)E、M所在曲線C1的方程及動(dòng)點(diǎn)G的軌跡C2的方程;
(Ⅱ)已知過(guò)點(diǎn)F的直線l交曲線C1于點(diǎn)P、Q,交軌跡C2于點(diǎn)A、B,若||∈(),求△NPQ內(nèi)切圓的半徑的取值范圍.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,Rt△ABC的斜邊BC恰在x軸上,點(diǎn)B(-2,0),C(2,0)且AD為BC邊上的高.
(I)求AD中點(diǎn)G的軌跡方程;
(Ⅱ)若一直線與(I)中G的軌跡交于兩不同點(diǎn)M、N,且線段MN恰以點(diǎn)(-1,)為中點(diǎn),求直線MN的方程;
(Ⅲ)若過(guò)點(diǎn)(1,0)的直線l與(I)中G的軌跡交于兩不同點(diǎn)P、Q試問(wèn)在x軸上是否存在定點(diǎn)E(m,0),使恒為定值λ?若存在,求出點(diǎn)E的坐標(biāo)及實(shí)數(shù)λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

 

一、選擇題(本大題共10小題,每小題5分,共50分)

1―5 ABCDC    6―10 CDBAB

二、填空題(本大題共7小題,每小題4分,共28分)

11.    12.    13.10    14.    15.1    16.50    17.―1

三、解答題(本大題共5小題,共72分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算過(guò)程)

18.(本小題滿分14分)

解:(I)    ………………3分

  ………………5分

   ………………8分

   (II)由(I)可得 …………14分

19.(本小題滿分14分)

解:(I)由從而

   (II),

  ………………11分

   ………………14分

20.(本小題滿分14分)

解:(1)在D1B1上取點(diǎn)M,使D1M=1,

連接MB,MF。 ………………1分

∵D1F=1,D1M=1,

∵BE//B1C1,BE=1,

∴MF//BE,且MF=BE

∴四邊形FMBE是平行四邊形。……5分

∴EF//BM,

又EF平面B1D1DB,

BM平面B1D1DB,

∴EF//平面B1D1DB。

   (II)∵△D­1B1C1是正三角形,取B1C1中點(diǎn)G,

  • 連接HE,F(xiàn)E。 …………8分

    ∵ABCD―A1B1C1D1是直棱柱,

    ∴C1C⊥平面A1B1C1D1

    又D1G平面A1B1C1D1

    ∴C1C⊥D1G,又D1G⊥B1C1,

    ∴D1G⊥平面B1BCC1,又∵FH//D1G,

    ∴FH⊥平面B1BCC1,

    ∴∠FEH即為直線EF與平面B1BCC1所成角。…………10分

    21.(本小題滿分15分)

    解:(I)把點(diǎn)……1分

    …………3分

       (II)當(dāng)

    單調(diào)遞減區(qū)間是,

    22.(本小題滿分15分)

        解:(I)設(shè)翻折后點(diǎn)O坐標(biāo)為

      …………3分

       ………………4分

    當(dāng)   ………………5分

    綜上,以  …………6分

    說(shuō)明:軌跡方程寫為不扣分。

       (II)(i)解法一:設(shè)直線

    解法二:由題意可知,曲線G的焦點(diǎn)即為……7分

       (ii)設(shè)直線

    …………13分

    故當(dāng)

     


    同步練習(xí)冊(cè)答案