18. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對(duì)任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點(diǎn)軸上移動(dòng)時(shí),求動(dòng)點(diǎn)的軌跡方程;

(Ⅱ)過(guò)的直線與軌跡交于、兩點(diǎn),又過(guò)、作軌跡的切線、,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項(xiàng)公式;

(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有;

(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

 

一、選擇題(本大題共10小題,每小題5分,共50分)

1―5 ABCDC    6―10 CDBAB

二、填空題(本大題共7小題,每小題4分,共28分)

11.    12.    13.10    14.    15.1    16.50    17.―1

三、解答題(本大題共5小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算過(guò)程)

18.(本小題滿分14分)

解:(I)    ………………3分

  ………………5分

   ………………8分

   (II)由(I)可得 …………14分

19.(本小題滿分14分)

解:(I)由從而

   (II)

  ………………11分

   ………………14分

20.(本小題滿分14分)

解:(1)在D1B1上取點(diǎn)M,使D1M=1,

連接MB,MF。 ………………1分

∵D1F=1,D1M=1,

∵BE//B1C1,BE=1,

∴MF//BE,且MF=BE

∴四邊形FMBE是平行四邊形!5分

∴EF//BM,

又EF平面B1D1DB,

BM平面B1D1DB,

∴EF//平面B1D1DB。

   (II)∵△D­1B1C1是正三角形,取B1C1中點(diǎn)G,

  1. 連接HE,F(xiàn)E。 …………8分

    ∵ABCD―A1B1C1D1是直棱柱,

    ∴C1C⊥平面A1B1C1D1,

    又D1G平面A1B1C1D1,

    ∴C1C⊥D1G,又D1G⊥B1C1,

    ∴D1G⊥平面B1BCC1,又∵FH//D1G,

    ∴FH⊥平面B1BCC1

    ∴∠FEH即為直線EF與平面B1BCC1所成角。…………10分

    21.(本小題滿分15分)

    解:(I)把點(diǎn)……1分

    …………3分

       (II)當(dāng)

    單調(diào)遞減區(qū)間是,

    22.(本小題滿分15分)

        解:(I)設(shè)翻折后點(diǎn)O坐標(biāo)為

      …………3分

       ………………4分

    當(dāng)   ………………5分

    綜上,以  …………6分

    說(shuō)明:軌跡方程寫(xiě)為不扣分。

       (II)(i)解法一:設(shè)直線

    解法二:由題意可知,曲線G的焦點(diǎn)即為……7分

       (ii)設(shè)直線

    …………13分

    故當(dāng)

     


    同步練習(xí)冊(cè)答案