的結(jié)論下.設(shè)函數(shù)的最小值, 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=x2+x.(1)解不等式:f(x)<0;(2)請先閱讀下列材料,然后回答問題.
材料:已知函數(shù)g(x)=,問函數(shù)g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說明理由.一個(gè)同學(xué)給出了如下解答:
解:令u=-f(x)=-x2-x,則u=-(x+2+
當(dāng)x=-時(shí),u有最大值,umax=,顯然u沒有最小值,
∴當(dāng)x=-時(shí),g(x)有最小值4,沒有最大值.
請回答:上述解答是否正確?若不正確,請給出正確的解答;
(3)設(shè)an=,請?zhí)岢龃藛栴}的一個(gè)結(jié)論,例如:求通項(xiàng)an.并給出正確解答.
注意:第(3)題中所提問題單獨(dú)給分,.解答也單獨(dú)給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時(shí)提出兩個(gè)問題,則就高不就低,解答也相同處理.

查看答案和解析>>

函數(shù)f(x)=x3+
12
ax2+x+1
(x∈R).
(1)若f(x)在x∈(-∞,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)在(1)的條件下,設(shè)g(x)=e2x-aex,x∈[0,ln2],求函數(shù)g(x)的最小值;
(3)當(dāng)a=0時(shí),曲線y=f(x)的切線的斜率的取值范圍記為集合A,曲線y=f(x)上不同兩點(diǎn)P(x1,y1),Q(x2,y2)連線的斜率的取值范圍記為集合B,你認(rèn)為集合A,B之間有怎樣的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

函數(shù)f(x)=x3+
1
2
ax2+x+1
(x∈R).
(1)若f(x)在x∈(-∞,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)在(1)的條件下,設(shè)g(x)=e2x-aex,x∈[0,ln2],求函數(shù)g(x)的最小值;
(3)當(dāng)a=0時(shí),曲線y=f(x)的切線的斜率的取值范圍記為集合A,曲線y=f(x)上不同兩點(diǎn)P(x1,y1),Q(x2,y2)連線的斜率的取值范圍記為集合B,你認(rèn)為集合A,B之間有怎樣的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

已知函數(shù)f(x)=
13
x3+ax2+bx,且f′(-1)=0.
(1)試用含a的代數(shù)式表示b,并求f(x)的單調(diào)區(qū)間;
(2)令a=-1,設(shè)函數(shù)f(x)在x1,x2(x1<x2)處取得極值,記點(diǎn)M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,請仔細(xì)觀察曲線f(x)在點(diǎn)P處的切線與線段MP的位置變化趨勢,并解釋以下問題:
(Ⅰ)若對任意的t∈(x1,x2),線段MP與曲線f(x)均有異于M,P的公共點(diǎn),試確定t的最小值,并證明你的結(jié)論;
(Ⅱ)若存在點(diǎn)Q(n,f(n)),x≤n<m,使得線段PQ與曲線f(x)有異于P、Q的公共點(diǎn),請直接寫出m的取值范圍(不必給出求解過程).

查看答案和解析>>

已知函數(shù)f(x)=lnx,g(x)=
12
ax2+bx (a≠0).

(Ⅰ)若a=-2時(shí),函數(shù)h(x)=f(x)-g(x)在其定義域是增函數(shù),求b的取值范圍;
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)函數(shù)φ(x)=e2x+bex,x∈[0,ln2],求函數(shù)φ(x)的最小值;

查看答案和解析>>

一、選擇題

二、填空題

13.;   14.112;  15.;    16.

三、解答題

17.解:∵向量 的夾角,

①當(dāng)時(shí),;②當(dāng)時(shí),;③當(dāng)時(shí),

綜上所述:當(dāng)時(shí), 的范圍是當(dāng)時(shí),的范圍是;

當(dāng)時(shí), 的范圍是

18.解:(1) ∵底面ABC,∴.又∵是正三角形,且E為AC的中點(diǎn),.又,平面PAC.平面PEF,

∴平面 平面PAC.

(2)取CD的中點(diǎn)F,則點(diǎn)F即為所求.∵E、F分別為CA、CD的中點(diǎn),.

平面PEF,平面PEF,∴平面PEF.

(3).

19.解:(1)

依題意

 

(2)

在Rt△ABC中,

20.解:(I),

 由,

  ,

,∴

(II)由得:

,

 ,

由②-①得:

。

21解:當(dāng)年生產(chǎn)x(萬件)時(shí),

年生產(chǎn)成本=固定費(fèi)用+年生產(chǎn)費(fèi)用,

年銷售收入,∵利潤=銷售收入―生產(chǎn)成本―促銷費(fèi),

 ∴

 

(萬元).

當(dāng)切僅當(dāng)時(shí),

∴該企業(yè)2008年的促銷費(fèi)投入7萬元時(shí),企業(yè)的年利潤(萬元)最大.

22.解:(1)依題意:上是增函數(shù),

恒成立,

∴b的取值范圍為

(2)設(shè)則函數(shù)化為,

∴當(dāng)上為增函數(shù),

當(dāng)時(shí),當(dāng)

當(dāng)上為減函數(shù),

當(dāng)時(shí),綜上所述,當(dāng)

當(dāng)時(shí),;

(3)設(shè)點(diǎn)P、Q的坐標(biāo)是

則點(diǎn)M、N的橫坐標(biāo)為C1在M處的切線斜率為

C­2­在點(diǎn)N處的切線斜率

假設(shè)C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線平行,則

。設(shè)。

所以上單調(diào)遞增,故,則這與①矛盾,假設(shè)不成立,故C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線不平行。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊答案