查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對(duì)任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點(diǎn)軸上移動(dòng)時(shí),求動(dòng)點(diǎn)的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點(diǎn),又過作軌跡的切線、,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,

(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項(xiàng)公式;

(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有;

(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分,

1―5BADAD 6―10CBCAA

 

二、填空題:本大題共6小題,每小題5分,共24分。

17.       解:(1)

所以

(2)當(dāng)時(shí),

所以,即。

(3)所以

所以

所以

 

18.      解:(1)甲、乙兩景點(diǎn)各有一個(gè)同學(xué)交換景點(diǎn)后,甲景點(diǎn)恰有2個(gè)A班同學(xué)有兩種情況

①     互換的是A班同學(xué),此時(shí)甲景點(diǎn)恰有2個(gè)A班的同學(xué)的事件記為.

②     ②互換的是B班同學(xué),此時(shí)甲景點(diǎn)恰有2個(gè)A班的同學(xué)的事件記為..

所以甲景點(diǎn)恰有2個(gè)A班的同學(xué)的概率.

(2) 甲景點(diǎn)內(nèi)A班的同學(xué)數(shù)為,

,

所以

 

 

19.  解:(1)

時(shí),取得最小值,

(2)令

,得(舍去)

(0,1)

1

(1,2)

0

極大值

 

內(nèi)有最大值,

對(duì)時(shí)恒成立等價(jià)于恒成立。

 

20.  (1)證明:以A為原點(diǎn),AB,AD,AP所在直線為坐標(biāo)軸建立直角坐標(biāo)系(如圖)

   

所以

,

(2)解:,與底面成角,

過E作,垂足為F,則,

,于是

所成角的余弦值為。

(3)設(shè)平面,則

A點(diǎn)到平面PCD的距離設(shè)為,則

即A點(diǎn)到平面PCD的距離設(shè)為。

 

21.        解:(1)在等比數(shù)列中,前項(xiàng)和為,若成等差數(shù)列,則成等差數(shù)列。

(2)數(shù)列的首項(xiàng)為,公比為。由題意知:

當(dāng)時(shí),有

顯然:。此時(shí)逆命題為假。

當(dāng)時(shí),有,

,此時(shí)逆命題為真。

 

22.        解:(1)設(shè)橢圓方程為

解得所以橢圓方程

(2)因?yàn)橹本平行于OM,且在軸上的截距為

,所以的方程為:

因?yàn)橹本與橢圓交于兩個(gè)不同點(diǎn),

所以的取值范圍是。

(3)設(shè)直線的斜率分別為,只要證明即可

設(shè),則

可得

故直線MA、MB與軸始終圍成一個(gè)等腰三角形。

 

 

 

 


同步練習(xí)冊(cè)答案