設(shè)圓心到此直線(xiàn)的距離為.則.得 查看更多

 

題目列表(包括答案和解析)

已知曲線(xiàn)上動(dòng)點(diǎn)到定點(diǎn)與定直線(xiàn)的距離之比為常數(shù)

(1)求曲線(xiàn)的軌跡方程;

(2)若過(guò)點(diǎn)引曲線(xiàn)C的弦AB恰好被點(diǎn)平分,求弦AB所在的直線(xiàn)方程;

(3)以曲線(xiàn)的左頂點(diǎn)為圓心作圓,設(shè)圓與曲線(xiàn)交于點(diǎn)與點(diǎn),求的最小值,并求此時(shí)圓的方程.

【解析】第一問(wèn)利用(1)過(guò)點(diǎn)作直線(xiàn)的垂線(xiàn),垂足為D.

代入坐標(biāo)得到

第二問(wèn)當(dāng)斜率k不存在時(shí),檢驗(yàn)得不符合要求;

當(dāng)直線(xiàn)l的斜率為k時(shí),;,化簡(jiǎn)得

第三問(wèn)點(diǎn)N與點(diǎn)M關(guān)于X軸對(duì)稱(chēng),設(shè),, 不妨設(shè)

由于點(diǎn)M在橢圓C上,所以

由已知,則

,

由于,故當(dāng)時(shí),取得最小值為

計(jì)算得,,故,又點(diǎn)在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>


同步練習(xí)冊(cè)答案